

Fair-PaperRec: Fair Learning for Bias Mitigation and Quality Optimization in Paper Recommendation

Uttamasha Anjally Oyshi, Susan Gauch

The Seventeenth International Conference on Information, Process, and Knowledge Management eKNOW2025

Presenter: Uttamasha Anjally Oyshi University of Arkansas, USA Email: uoyshi@uark.edu

Presenter Biography

- Uttamasha Anjally Oyshi Ph.D. student, Computer Science, University of Arkansas
- Graduate Research Assistant, EECS Department
- Masters in Computer Science, University of Arkansas at Little Rock
- Bachelors in Electronics and Communication Engineering, Khulna University of Engineering & Technology, Bangladesh
- Research Interests: Fairness in AI, bias mitigation, causal inference, deep learning in recommendation systems

Motivation

- Persistent demographic gaps in academia affects race, gender, nationality, age, disability
- Lack of diversity affects paper ecosystems fewer marginalized voices as authors, reviewers, speakers
- SIGCHI 2020 set diversity goals
 - Acknowledged limits of anonymity-based masking
- Double-blind review is not enough
 - Reviewers often infer authorship via writing style, citations, preprints
 - Leads to biased acceptance toward familiar demographics
- **Evidence of systemic bias** reviewers favor similar backgrounds
- Need for fairness-aware post-review tools
 - Correct residual bias without compromising quality

Research Goals

- Develop a fairness-aware recommendation model for post-review conference paper selection
- Integrate author demographics into a neural network using paper review metadata
- Design a custom fairness loss function that balances paper quality (via h-index, conference tier) with demographic parity
- Simulate real-world review behavior by modeling conference-specific tiers (e.g., strong/weak accept) to mimic varying levels of review strictness and selection pressure
- **Ensure demographic parity** across **multiple protected attributes** (e.g., race, country)

Approach Overview

- □ **Fair-PaperRec**: Fairness-aware MLP model for post-review paper recommendation
- Targets both individual (race & country) and intersectional fairness
 (race + country) while preserving paper quality
- Applies after double-blind review to correct residual bias in accepted papers

Related Work: Paper Recommendation Approaches

- Burke (2017) introduced multi-sided fairness, accounting for fairness across different stakeholders (e.g., users and providers) in recommender systems.
- Beutel et al. (2017) proposed adversarial debiasing, using adversarial networks to learn fair representations that remove sensitive attribute information.
- Alsaffar et al. (2021) implemented greedy re-ranking, adjusting the output rankings post-hoc to satisfy fairness constraints without retraining the model.
- Bobadilla et al. (2021) developed DeepFair, a deep learning framework that integrates fairness constraints directly into the learning process for recommender systems.

Dataset and Feature Overview

- Conference data used: SIGCHI, DIS, IUI
 - SIGCHI as 'strong accept' (high reputation), DIS as 'weak accept', and IUI as 'weak reject'.
 - □ This structure **reflects real-world paper evaluation** distributions.
 - Incorporated into training for better utility-fairness tradeoff modeling.
- □ Features: h-index, race, country, conference ID
- Target: paper acceptance label
- Author metadata: race, country, gender, career stage
- Data split: 80% training / 20% validation (stratified)

Architecture Design

- Simple Multi Layer Perceptron (MLP) with 2 hidden layers, ReLU and batch normalization
- Inputs: h-index, citation-based features; protected attributes excluded from input
- Outputs: Probability of paper acceptance

Model Architecture

- Fair-PaperRec Model Overview
 - Input: Author attributes, h-index, conference ratings
 - Output: Acceptance probabilities ensuring fairness

Figure 1: Overview of the Fair-PaperRec Architecture.

Fairness Loss Function

- **Total Loss:** L_total = L_prediction + $\lambda *$ L_fairness
- L_fairness penalizes demographic disparity in acceptance rates
- \square λ controls trade-off between fairness and accuracy
- Allows post-review adjustment without retraining entire model

Experimental Setup

- PyTorch, NVIDIA GPUs, Adam optimizer
- Metrics: Macro Gain, Micro Gain, Utility Gain
- Early stopping for robustness

Implementation and Training

- Trained with Adam optimizer, early stopping, stratified data split
- \square λ hyperparameter tuned for fairness–utility tradeoff
- Repeated experiments ensure robustness across conference datasets

Results and Analysis: Impact of Fairness Constraints on Country Representation

- Best trade-off for country
 - fairness observed at λ = 2.5.
- Macro and Micro Gains
 improve with increasing λ.
- Slight utility drop at high λ
 shows trade-off with fairness

Figure 2: Comparison of Macro and Micro Gains for Country Across Different Fairness Configurations.

Results and Analysis: Impact of Fairness Constraints on Race Representation

- Optimal λ = 3 shows 42.03%
 macro and 56.48% micro gain.
- Diversity improves steadily with λ for racial fairness.
- Utility remains stable at optimal λ.

Figure 3: Comparison of Macro and Micro Gains for Race Across Different Fairness Configurations.

Results and Analysis

- **Optimal** λ identified: Race λ =3, Country λ =2.5
- \Box Diversity increases with λ
- Modest impact on quality (Utility Gain: 3.16%)

Ablation Study: Gain calculations for country and race features with utility gain

- Evaluate Fair-PaperRec's performance when simultaneously enforcing fairness across race and country
- \Box Use different weight combinations and regularization strengths (λ)

λ	Weights	Country Feature		Race Feature		$UG_i(\%)$	Avg. $D_{C}(\%)$	Avg. F (%)
		Macro Gain (%)	Micro Gain (%)	Macro Gain (%)	Micro Gain (%)			
1	$W_{\rm r} = 0.32, W_{\rm c} = 0.68$	6.17	6.34	30.51	46.30	3.16	44.66	53.71
	$W_{\rm r} = 1, W_{\rm c} = 2$	6.73	9.15	-0.25	0.37	2.81	6.48	13.77
	$W_{\rm r} = 2, W_{\rm c} = 1$	7.43	11.43	12.91	16.11	3.16	25.63	40.36
2	$W_{\rm r} = 0.32, W_{\rm c} = 0.68$	13.60	24.43	30.51	42.22	4.21	55.38	68.47
	$W_{\rm r} = 1, W_{\rm c} = 2$	5.24	6.88	15.45	17.96	0.70	20.69	21.58
	$W_{\rm r} = 2, W_{\rm c} = 1$	8.36	12.86	39.49	54.26	1.75	26.31	21.58
2.5	$W_{\rm r} = 0.32, W_{\rm c} = 0.68$	8.63	17.33	36.58	50.37	2.46	56.46	66.31
	$W_{\rm r} = 1, W_{\rm c} = 2$	9.89	14.00	30.63	46.30	2.81	40.52	62.09
	$W_{\rm r} = 2, W_{\rm c} = 1$	9.60	17.11	42.53	56.48	1.40	59.25	69.98
3	$W_{\rm r} = 0.32, W_{\rm c} = 0.68$	7.15	11.42	39.49	53.89	1.40	55.98	63.45
	$W_{\rm r} = 1, W_{\rm c} = 2$	10.16	21.17	33.29	43.89	0.70	43.45	47.63
	$W_{\rm r} = 2, W_{\rm c} = 1$	9.60	18.35	42.53	55.37	2.81	61.90	47.63
5	$W_{\rm r} = 0.32, W_{\rm c} = 0.68$	10.80	19.38	45.82	58.52	0.70	65.09	72.92
	$W_{\rm r} = 1, W_{\rm c} = 2$	4.69	3.88	33.92	40.19	0.35	38.61	15.73
	$W_{\rm r} = 2, W_{\rm c} = 1$	7.43	11.90	39.49	52.96	5.26	52.26	15.73
10	$W_{\rm r} = 0.32, W_{\rm c} = 0.68$	9.60	18.34	42.53	55.37	1.40	62.92	70.89
	$W_{\rm r} = 1, W_{\rm c} = 2$	7.43	13.91	24.94	25.19	4.91	32.37	34.88
	$W_{\rm r} = 2, W_{\rm c} = 1$	7.43	11.72	35.44	47.41	-4.21	40.53	34.88

Key Findings from Ablation Study

Using λ = 2.5 with weights Wr = 0.32, Wc = 0.68 achieved balanced gains:

- Race: 36.58% Macro, 50.37% Micro
- Country: 8.63% Macro, 17.33% Micro
- Utility Gain: 2.46%, Avg. Diversity Gain: 56.46%, Avg. F-measure: 66.31%
- Increasing race weight improves diversity for both race and country. Increasing country weight may harm race fairness
- Higher λ boosts fairness but lowers utility, confirming trade-off
- \Box Use different weight combinations and regularization strengths (λ)

Main Contributions

- Fair-PaperRec: A fairness-aware neural model that reframes paper acceptance as a recommendation problem
- Introduces a custom fairness loss for post-review demographic correction across race and country
- Models' intersectional fairness through weighted loss terms for multiple attributes
- Achieves fairness without modifying the original peer-review pipeline
- Evaluated on real-world conference data (SIGCHI, DIS, IUI), demonstrating fairness—utility trade-offs

Key Findings

- Double-blind review is insufficient: Bias persists due to identity cues and systemic imbalance.
- Fairness-aware post-review correction can significantly improve diversity:
 - Up to 42.53% macro gain in racial representation.
 - Utility remains stable (e.g., 3.16% gain in some settings).
- Optimal fairness is attribute-sensitive:
 - \square Race requires higher λ due to deeper disparities.
 - □ Weight calibration is critical when optimizing multiple attributes.

Future Direction

Causal Inference

Explore causal links between demographic traits and paper acceptance

Apply models like ATE, Counterfactual Fairness

Construct causal DAGs to estimate direct/indirect effects

Improves explainability and bias source diagnosis

Advanced neural models i.e., Variational AutoEncoders (VAE), Graph Neural Networks (GNNs)

Add more attributes beyond race and geolocation

Acknowledgement

- Supported by National Science Foundation (NSF)
- Award No. OIA-1946391 (DART)

Thank You!