Deep Learning-based Failure Detection for Safety Diagnostics of Hydrogen Storage Vessels

Dong-Ju Kim

Institute of Artificial Intelligence, POSTECH, South Korea Contact email : <u>kkb0320@postech.ac.kr</u>

- 1 Introduction
- 2 Related Works
- **3** Background
- **4** Failure Detection Methodology
- **5** Experiment Result
- 6 Conclusion

1. Introduction

Why Hydrogen ?

Hydrogen

- Clean energy source, zero emissions of greenhouse gas
- Key to climate change & energy security
- Gas state at room temperature \rightarrow **bulky, flammable**
- Therefore, requires advanced storage and transportation technologies
- Hydrogen storage vessels
 - Classify into types 1 to 4 according to their materials
 - Type 1 : entirely metals such as aluminum or steel
 - Type 2 : metal (inner layer) + Glass Fiber Reinforced Plastic (outer layer)
 - Type 3 : metal (inner layer) + Carbon Fiber Reinforced Plastic (outer layer)
 - Type 4 : resin liner (inner layer) + CFRP(outer layer)

[Types of hydrogen storage vessels]

Type 1 Safety Challenges

- Metal vessels (Type 1)
 - Be exposed to fatigue, corrosion, cracking
 - Increase risk of leakage or explosion
 - So, needs the periodic inspection and failure detection
- Traditional inspection method
 - Often require <u>disassembly of the vessel</u>, but it is not feasible during operation
 - So, Non-Destructive Testing (NDT) technologies, such as ultrasonic, radiographic and Acoustic Emission Testing (AET) are essential → provide real-time in-service safety diagnostics.
- AE-Based failure detection method
 - Effective method because AET analyses acoustic signals generated during failure
 - Previous works : mostly focused on failure detection of Type 2 and Type 3 vessels.
- So, this study proposes a deep learning-based failure detection method of Type 1 vessels.

2. Related Works

FEM-Based vs. AE-Based Research

- Research on hydrogen storage failure detection
 - Divide into Finite Element Model (FEM)-based approaches and AE signal analysis methods.
- FEM simulates stress & fatigue under operational condition → <u>but limited for real-time diagnostics</u>
- AET enables real-time failure detection → No need for complex numerical models

Current Limitations in AE-based Research

- Mostly focused on composite vessels (Type 2, 3, 4 with CFRP)
- However, **Research on Type 1 vessels is lacking**, despite their widespread use

3. Background

Metal Failure Modes

- Elasticity : <u>Stress exceeds yield strength</u> → Reversible deformation (returns to original shape)
- **Plasticity** : <u>Permanent deformation</u>, Material does not return to original shape after stress removal
- Fracture : <u>Cracks or full breakage</u> due to excessive stress, Irreversible structural failure
- Metals have sequential failure behavior according to fatigue level

3. Background

Acoustic Emission Testing (AET) System

- NDT : Can be inspect without damaging the object
 - \rightarrow Enables real-time failure detection
- AET overview
 - Detects elastic waves from material deformation
 - System components:
 - \rightarrow AE Sensors (signal detection)
 - \rightarrow DAQ System (digital conversion)
 - \rightarrow Signal Analysis (interpretation)
- Data acquisition from AE sensors
 - Hit definition : use parameters such as threshold, Peak Definition Time (PDT), Hit Definition Time (HDT), Maximum Hit Duration (MHD) and Hit Lockout Time (HLT)
 - Features extracted:
 - ✓ Time domain: Max amplitude, Rise time
 - ✓ Frequency domain: Peak/Avg frequency

[Example of DAQ parameters for defining hits]

3. Background

Tensile Testing with AET

- Tensile testing:
 - Process that pulls customized specimens using Universal Testing Machine (UTM)
 - Here, stress applied until failure occurs
- AET-integrated test
 - Monitors acoustic signals during loading
- Failure detection:
 - Failures appear as inflection points on load graph
 - By analyzing these inflection points, changes in the specimen properties can be understood.

Data Collection – Specimens

- Specimen materials : Stainless Steel (SUS304), Steel (SS400), Aluminum (AL6106-T6)
 - \rightarrow Widely used in hydrogen storage vessels
 - \rightarrow These specimens were fabricated in accordance with Korean standard KS B 0801 No. 5

[Example of specimens]

Material	Standard	Example Images		
Stainless steel	SUS304			
Steel	SS400			
Aluminum	AL6106-T6			

Data Collection – Tensile testing

- Actuality, perform the tensile testing to induce material specific failures
- Testing setup
 - Equipment: Sintech MTS System
 - AE Sensor: IDK-AES-H150 Resonant Sensor (1 MHz)
- Frequency filtering applied
 - Failures-related AE Signals occur mostly < 500 kHz
 - Noise < 10 kHz removed

[Tensile testing environment]

Data Collection – Data acquisition & labeling

- Data acquisition
 - Collect waveform data during tensile failure events
 - Normal AE signals collected from Type 1 vessels
 under safe pressure

- Failure region labeling
 - Failure occurs when tensile load exceeds yield strength
 - Inflection points on the load-time curve help segment failure regions
 - Elastic region: Stress < Yield Point (Minimal deformation)
 - Plastic region: Stress > Yield Point (Large deformation)
 - Fracture: Material fails to support load, Load drops sharply to zero

[Tensile-load graph and failure region of each material specimens]

[Number of acquisition data]

Specimen	Number of data		
Stainless steel	333		
Aluminum	2,056		
Steel	44,792		
Type 1 Storage (Normal)	69,243		

Data Collection – Construction of frequency spectrum dataset

- Frequency features help reduce sensor-related variability
 → Enables more generalizable classification
- So, Discrete Fourier Transform (DFT) applied using FFT algorithm
- FFT:
 - Perform every 1024 samples of waveform
 - Due to symmetry, only positive frequencies (512 samples) are used
 - Scaled to range [0, 1] for normalization

(b) Frequency Spectrum

Frequency(Hz)

[Example of waveform and frequency spectrum]

Augmentation

- Class imbalance can negatively affect model training and classification performance
- So, <u>applied Synthetic Minority Over-sampling Technique(SMOTE</u>) augmentation to the training set
- The table below shows the number of samples in each dataset after SMOTE augmentation

Failure Mode	Tra	ain	Validation	Test
	Before Augmentation	After Augmentation	Validation	lest
Elasticity	3,516	41,545	1,172	1,172
Plasticity	24,717	41,545	8,239	8,239
Normal	41,545	41,545	13,849	13,849
Total	69,778	124,635	23,260	23,260

[Number of train / validation / test dataset]

Model Architecture

- To classify failure states, <u>Design one-dimensional convolutional neural network (1D-CNN)</u>
- Finally, 12-Layer 1D-CNN and ResNet-50 1D-CNN network are built
- Also, Extracts features from both waveform and frequency spectrum for multimodal learning

Experimental Setup

- Deep Learning Model
 - Use batch normalization and max-pooling (size: 2)
 - Softmax activation for probability output
 - Nadam optimizer for model training
- Performance evaluation scenarios
 - 1. Dataset split : 60% training (SMOTE applied) / 20% validation / 20% test
 - 2. Classes: Elasticity, Plasticity, Normal
 - 3. Input : 1) Waveform data only, 2) Frequency spectrum data only, 3) Multimodal (combined waveform and frequency spectrum)
- Performance comparison with different model
 - → 12-Layer 1D-CNN and ResNet-50 1D-CNN used as feature extractor to compare performance
 - \rightarrow Assessed benefits of shallower vs. deeper architectures

Experimental Results

• Table below : classification performance for models using different inputs and architectures.

Input Data Type	Model Structure	Accuracy	Precision	Recall	F1-Score
Waveform Only	12-Layer 1D-CNN	98.87%	0.9603	0.9622	0.9613
	ResNet-50 1D-CNN	98.83%	0.9602	0.9655	0.9628
Frequency Spectrum Only	12-Layer 1D-CNN	98.94%	0.9599	0.9712	0.9654
	ResNet-50 1D-CNN	98.93%	0.9604	0.9624	0.9614
Multimodal	12-Layer 1D-CNN	99.19%	0.9723	0.9743	0.9733
	ResNet 1D-CNN	98.89%	0.9590	0.9686	0.9637

[Classification Performance]

Experimental Results & Best Model

- Best result
 - \rightarrow 12-layer 1D CNN (Multimodal)
 - \rightarrow Accuracy: 99.19%, F1 Score: 0.9733
- Insights
 - <u>Multimodal model outperformed single-input models</u>
 - \rightarrow Waveform-only and Spectrum-only performed lower
 - \rightarrow Confirms that combining waveform and spectrum is complementary and effective
 - <u>Shallower model (12-layer) outperformed deeper model (ResNet-50)</u>
 → More complex architecture not required for this task

Conclusion

- This study proposed a multimodal deep learning model for failure detection in Type 1 hydrogen storage vessels
 - Collected AE signals via tensile tests \rightarrow Dataset built for elastic, plastic, and normal regions
 - Employ **multimodal model** used both waveform and frequency spectrum data
 - Consequently, Achieved **99.19% accuracy and 0.9733 F1 score**
 - **Demonstrated excellent performance** in failure detection

Thank you

kkb0320@postech.ac.kr