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Giovanni Nardini

Giovanni Nardini holds a Master's degree in Mechanical Engineering
from Sapienza University of Rome, and specialized in Al and Computer
Vision. His current work involves combining insights from his
engineering background with Artificial Intelligence and Computer
Vision, focusing on developing solutions for real-world challenges. He
now leads Al development at Key2, focusing on Computer Vision and

Machine Learning applications.




The challenge of maintaining roads
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Alternative technological approaches ..

INn-Vehicle Inertial Data Computer Vision & Deep
Analysis: Learning on camera:
Crack IT. Crack Can detect Can see
TR0) A b ;HWW impacts and defects in
noise images
Pothole Pothole
BUT:

e [Imited detail on geometry * location accuracy is poor

e suffers from lightning

e depends on defect size 2.
conditions

* depends on vehicle path  detections are in 2D, very

« Noise interpretation poor size estimation




Our Approach

Vision Data: Outputs:
RGB Image e Detection of both
pothole and cracks
\ ﬁ defects
e Scene understanding /
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Hardware Setup

A vehicle-mounted system
desighed for continuous and
automated road monitoring
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Software Architecture
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Framework: Robot Operating System (ROS)

Nodes:
e Input Sensors drivers Nodes (Lidar,
USB_Camera, GNSS/INS) » publish
e Synchronization algorithm
e « subscribe, Al Node, gets RGB image and
applies models:
o Road defects instance segmentation
o Scene semantic segmantation
o Garbage detection - publish
e « subscribe, 3D processing Node, applies:
o Camera - Lidar fusion
o Point Cloud detection projection
o Detected items reconstruction and
measurement -» publish
e « subscribe, Geolocation and data sending
Node -» Cloud



Multi-sensor Synchronization

Challenge: LiDAR, Camera, and GNSS/INS
sensors operate at different frequencies and
generate data asynchronously.

Why it's Crucial: Precise temporal alignment
(synchronization) is essential for:

o Accurately projecting 2D detections (from
Camera) onto the corresponding 3D point
cloud (from LIDAR).

e Associating the correct vehicle pose (from

GNSS/INS) with each sensor measurement.

e Ensuring reliable geolocation of detected
road defects.
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Al models applied to RGB frames

YOLO-Small Defects Instance
Segmentation Architecture

o e g S

YOLO-Nano Garbage
Detection Architecture

Output:
e Masks and Bounding Boxes of
each detected pothole (red)
. Mask of all cracks (yellow)

Output:
. Bounding Boxes of each
detected garbage instance (blue)

SegFormerBIl Scene Semantic
Segmentation Architecture

road
sidewalk
building
wall
fence

ole

raffic light
traffic sign
vegetation
terrain

train
motorcycle
bicycle

Output:
. Mask of semantic
segmentation (each pixel is
classified into specific classes)



3D Lidar-Camera Fusion

Goal: To combine the strengths of both sensors,
leveraging the Al's ability to detect defects in rich

2D camera images and the LIDAR's ability to
provide precise 3D geometric measurements.

Requires:

e Extrinsic Parameters: The precise 3D position :
and orientation of the camera relative to the CPO’”tCIOU@
LIDAR sensor.
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e Intrinsic Parameters: Camera's internal
characteristics (focal length, principal point,
distortion).
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3D Measurements

Once defects are projected onto Point Cloud
domain, we can make some measurements:
e Pothole extension [cm?2]

IO = e Pothole max depth [cm]
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Crack mask and scene
semantic segmentation are
used together to compute
cracks percentage over total
asphalt:
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Results: Defects segmentation Al performance

Validation Context: The Al model was rigorously evaluated on dedicated
test datasets, reflecting diverse urban road conditions.

Performance metrics:

e Mean Average Precision ImmAP @ loU 0.5:0.95): 0.56
Interpretation: Reflects robust performance in detecting and
segmenting potholes and alligator cracks across various sizes and
appearances.

1 k
mAP — Z;AB

e F1-Score: 0.57
Interpretation: Indicates a solid balance between Precision
(minimizing false detections) and Recall (capturing most actual

f :
defects) o TP TP = True positive
Precision = TP+ FP
i TN = True negative
TP FP = False positive
Recall = ————
TP + FN FN = False negative
Pl = . Pprecision - recall

precision + recall



Results: Road segmentation Al performance

Validation Context: The Al model was rigorously evaluated on dedicated
test datasets, reflecting diverse urban road conditions.

Performance metrics:

e Mean Intersection over Union (mloU): 0.43
Interpretation: Shows the model's capability to
accurately outline the general road area within

the scene. .
Area of Overlap -

loU =
Area of Union .

e F1-Score (for 'Road' class): 0.98
Interpretation: Highlights exceptional reliability
and precision in identifying the road surface itself,
crucial for filtering out non-road detections.

PREDICTED ROAD PREDICTED BACKGROUND
PIXELS PIXELS

meee (0,99 RN

TRUE
PIXELS L ']



Results: 3D measurements performance

Validation Context: the performance of depth, extension and volume
estimation has been evaluated by manual measuring (laser distance meter,
on-site) a selection of real potholes.

3D Defect Dimensions:
Enabled by projecting Al detections onto the LIDAR point cloud for
reconstruction.

e Depth: relative error percentage of 24%

e Extension: relative error percentage of 6%

e Volume: relative error percentage of 19%

Interpretation: Demonstrates quite high accuracy in quantifying the actual
physical size of detected potholes. The extension is the most reliable
measurement.

Possible
sources of
errors:

e LiDAR intrinsic
error: +5cm/-5cm at
long range

e Sparse Point Cloud:
points decrease
density at longer
range

e Motion effects



Results: Web app navigation
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Images of each detection
(red mask-> pothole, yellow
mask-> crack)

Information Box for each
detection:

e STATUS

e IMAGE

e EXTENSION

e DEPTH

e VOLUME

e COORDINATES

e DETECTION TIMESTAMP

¢ Torna alla lista

3D Scene point cloud
with colorcoding



Conclusions & Future Works
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