



PROF. DR. MART VERHOOG

# Traditional Statistics and Machine Learning in SNA: A Comparative Reanalysis of Empirical Data

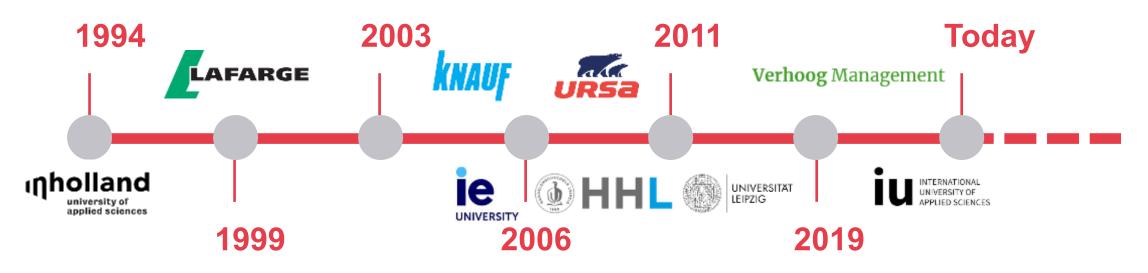
The 17<sup>th</sup> International Conference on Advances in System Modeling and Simulation SIMUL 2025

## PROF. DR. MART VERHOOG





- Worked for over 15 years as a marketing consultant and held various roles in the building materials industry across the Netherlands, Germany, and Belgium.
- Holds a Bachelor in Economics, an MBA in General Management, and a PhD in Marketing from HHL Leipzig; completed Executive Education at IE Madrid.
- Led the Research Centre for Municipal Energy Economics (FKE) at Leipzig University before taking up a professorship at IU International University of Applied Sciences
- Continues to work as an independent consultant and lives near Bonn, Germany with his wife, two children, and a dog.





"Prediction vs. explanation is a long-standing unresolved tension (Breiman, 2001; Radford & Joseph, 2020; Raeini et al., 2020)."



"Prediction vs. explanation is a long-standing unresolved tension (Breiman, 2001; Radford & Joseph, 2020; Raeini et al., 2020)."



"In social network research, the tension between prediction and explanation remains largely unresolved. We attempt a head-to-head in the domain of energy transition networks."

## MOTIVATION AND PROBLEM STATEMENT



- Many social scientists rely on regression (e.g. OLS, logistic regression) because of their interpretability, theory alignment, and familiarity.
- However, real-world networks often display nonlinearities, interactions, threshold effects, and structural dependencies that traditional models may miss.
- Machine Learning (ML) methods (decision trees, random forests, gradient boosting, neural nets) may better capture complex patterns but at the cost of opacity.
- Gap: In applied social network research (especially in domains like energy transitions), there is little systematic comparative work showing when and how ML "wins" over regression, or vice versa.

# **RESEARCH QUESTIONS**



- 1. Network conditions when do ML models achieve higher predictive accuracy than regression models?
- 2. 2. Feature relevance which network features emerge as most influential in ML compared to regression?
- 3. 3. Interpretability can tools, such as SHAP reconcile predictive accuracy with explanatory clarity in applied SNA for energy transition research?

## **EMPIRICAL FOUNDATION**



"This project builds on my earlier doctoral research, published as the book Controlling Actors and Decisions in Construction Networks (Springer, 2017).

Original study: ~700 household decisions on energy-efficient refurbishment analyzed with traditional statistical methods (regression, factor analysis). Provided insights into stakeholder roles, household attitudes, and network influence

Now:

We re-examine the same empirical data using Machine Learning methods

Goal: uncover additional structural patterns that may have remained hidden to traditional inference.



## DATA AND EMPIRICAL CONTEXT



• We use the dataset from Verhoog (2017) with ~700 household decisions regarding energy-efficient refurbishment.

- Variables include:
  - Household socio-demographic features (income, education, dwelling type)
  - Physical building features (insulation, age, heating systems)
  - Social network measures: degree, betweenness, closeness, tie strength, density, interaction intensity
  - Institutional variables: involvement of experts, consultants, banks, subsidy programs
- The goal: predict whether a given household undertakes energy retrofit, or the magnitude of retrofit, conditional on network embedding.

## **COMPARATIVE METHODOLOGICAL PIPELINE**





### **Preprocessing**

Impute missing values, normalize, encode categorical variables

## Feature Engineering

derive network metrics (degree, betweenness, closeness, density, tie strength)

## Regression Models

linear and logistic regression as transparent baselines

#### **ML Models**

Random Forests, Gradient Boosting, Support Vector Machines, optional Neural Nets

#### **Validation**

cross-validation with consistent train/test splits; hyperparameter tuning via grid search

#### **Evaluation**

predictive performance (R<sup>2</sup>, ROC-AUC) and interpretability with SHAP values

## **EXPECTED CONTRIBUTIONS & IMPLICATIONS**



- A systematic benchmark of regression vs ML in social network–embedded decisions (energy transitions)
- Insights into when ML is worthwhile vs when regression suffices
- Demonstrating the power of interpretability tools to "open the black box"
- Toward a hybrid approach: theory-driven models enriched by data-driven methods
- Practical guidance for social scientists or policy modelers: "If your network is sparse and variables are few, regression is likely enough. But when complexity arises, ML + SHAP bridges both worlds."
- Broader relevance: transferable to domains like diffusion, adoption, organizational networks, etc.

# CHALLANGES, LIMITATIONS AND NEXT STEPS



## **Challenges:**

- Overfitting risk in ML (especially with n ~700)
- Multicollinearity and feature redundancy
- Dependence across observations (network autocorrelation)
- Interpretability limits (some interactions remain obscure)

## **Limitations:**

- Single cross-sectional dataset
- Sample size vs. model complexity

## **Next steps:**

- Prepare dataset
- Build comparative pipeline (regression vs ML)
- Benchmark performance & interpretability
- Report results & submit full paper

## **SUMMARY & TAKE-HOME MESSAGE**



- Regression and ML offer complementary strengths: explanation vs. Prediction
- Interpretability tools (e.g., SHAP) can help bridge the gap
- Our contribution: an empirical roadmap for researchers facing this methodological dilemma
- Within the limits of a single, cross-sectional dataset