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Aim of our paper
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Our primary aim is:

1. designing an event-driven UWSN capable of monitoring a designated 
underwater area through a robust optimization approach,

2. assessing the robustness of the proposed model against the deterministic 
formulation, with consideration of key metrics influencing system behavior.



Contributions of our paper
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Contributions of our study are threefold:

1. A simulation framework integrating vehicle mobility, sensor deployment, and real-world 
bathymetry to realistically estimate sensing rates.

2. A robust optimization model with balanced 3D K-means partitioning to better capture 
localized uncertainty and traffic variations.

3. Computational tests indicating that small sensing-rate deviations degrade deterministic 
designs, while the robust design sustains performance and prolongs lifetime.
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Deterministic Network Model
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Parameters
T          : Desired network lifetime (s)

𝑒𝑗𝑖
𝑅𝑋 : Energy consumed by sensor i to receive a bit of data (mJ)

𝑒𝑖𝑗
𝑇𝑋 : Energy consumed to transmit a bit of data from sensor i to sensor j (mJ)

𝑠𝑘 : Amount of data sensed by sensor k per unit time (bits/s)

Decision variables

𝑓𝑖𝑗
𝑘 : The transmission rate of the data sensed by sensor k from sensor i to   

   sensor j

𝑒𝑖 : The initial energy allocated to sensor i

min 𝑒𝑚𝑎𝑥
𝑑𝑒𝑡

෍

(𝑖,𝑗)∈𝐴

𝑓𝑖𝑗
𝑘 − ෍

(𝑗,𝑖)∈𝐴

𝑓𝑗𝑖
𝑘 = ቐ

1, 𝑖 = 𝑘
−1, 𝑖 = 𝐵𝑆;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

s.t.:

∀𝑖 ∈ 𝑁𝐺 , ∀𝑘 ∈ 𝑁

෍

𝑘∈𝑁

෍

(𝑖,𝑗)∈𝐴

𝑇𝑒𝑖𝑗
𝑇𝑋𝑓𝑖𝑗

𝑘 𝑠𝑘 + ෍

(𝑗,𝑖)∈𝐴

𝑇𝑒𝑗𝑖
𝑅𝑋𝑓𝑗𝑖

𝑘𝑠𝑘  ≤  𝑒𝑖

𝑒𝑚𝑎𝑥
𝑑𝑒𝑡 ≥ 𝑒𝑖 ∀𝑖 ∈ 𝑁

𝑓𝑖𝑗
𝑘 ≥ 0

∀𝑖 ∈ 𝑁

∀ 𝑖, 𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝑁

∀𝑖 ∈ 𝑁

𝑒𝑖 ≥ 0



Robust Network Model
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Parameters
T          : Desired network lifetime (s)

𝑒𝑗𝑖
𝑅𝑋 : Energy consumed by sensor i to receive a bit of data (mJ)

𝑒𝑖𝑗
𝑇𝑋 : Energy consumed to transmit a bit of data from sensor i to sensor j (mJ)

𝑠𝑘
𝑛𝑜𝑚 : Nominal sensing rate of sensor k (bits/s)

𝑠𝑘
𝑑𝑒𝑣 : Sensing rate deviation of sensor k (bits/s)

β𝑘𝑗      : Binary parameter indicating whether sensor k belongs to region R𝑗

Decision variables

𝑓𝑖𝑗
𝑘 : The transmission rate of the data sensed by sensor k from sensor i to sensor j

𝑒𝑖 : The initial energy allocated to sensor i

μ𝑖𝑘 , λ𝑖𝑘 , θ𝑗𝑖 : dual variables

min 𝑒𝑚𝑎𝑥
𝑟𝑜𝑏

෍

(𝑖,𝑗)∈𝐴

𝑓𝑖𝑗
𝑘 − ෍

(𝑗,𝑖)∈𝐴

𝑓𝑗𝑖
𝑘 = ቐ

1, 𝑖 = 𝑘
−1, 𝑖 = 𝐵𝑆;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

s.t.:

∀𝑖 ∈ 𝑁𝐺 , ∀𝑘 ∈ 𝑁

෍

𝑘∈𝑁

μ𝑖𝑘 𝑠𝑘
𝑛𝑜𝑚 + 𝑠𝑘

𝑑𝑒𝑣 − λ𝑖𝑘𝑠𝑘
𝑛𝑜𝑚 + ෍

𝑗∈𝒥

θ𝑗𝑖(1 + α)β𝑘𝑗𝑠𝑘
𝑛𝑜𝑚  ≤  𝑒𝑖

𝑒𝑚𝑎𝑥
𝑟𝑜𝑏 ≥ 𝑒𝑖 ∀𝑖 ∈ 𝑁

μ𝑖𝑘 , λ𝑖𝑘, θ𝑗𝑖 , 𝑓𝑖𝑗
𝑘 , 𝑒𝑖 ≥ 0

∀𝑖 ∈ 𝑁

∀ 𝑖, 𝑗 ∈ 𝐴, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝒥, 𝑘 ∈ 𝑁

μ𝑖𝑘 − λ𝑖𝑘 + ෍

𝑗∈𝒥

θ𝑗𝑖β𝑘𝑗 ≥ ෍

(𝑖,𝑗)∈𝐴

𝑇𝑒𝑖𝑗
𝑇𝑋𝑓𝑖𝑗

𝑘 + ෍

(𝑗,𝑖)∈𝐴

𝑇𝑒𝑗𝑖
𝑅𝑋𝑓𝑗𝑖

𝑘 ∀𝑘 ∈ 𝑁

• In our robust optimization model, Balanced K-Means partitions the 
network into equal-sized R𝑗  subregions, ensuring uniform coverage and 

sufficient sensors to enable localized uncertainty analysis.
 
• This clustering supports a fair, symmetric robustness formulation by 

simplifying constraints and avoiding region-specific scaling.



Simulation Model

Simulation framework models underwater sensor–vehicle–seafloor interactions, producing data 
generation rates of sensors treated as uncertainty parameter for robust network model.



Algorithm for the Simulation and Modeling of Underwater Vehicle 
Motion



Computational Results Configuration Phase: 
Maximum Energy Allocation
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• In the configuration phase, the impact of the regional uncertainty budget (α) and node-specific deviations (σ) 
on maximum battery allocation requirements is evaluated. 

• The robust model accounts for uncertainties that can increase battery allocations, whereas the deterministic 
model ignores them. Sublinear growth keeps allocations moderate even under high uncertainty.



Computational Results Implementation Phase: 
Network Lifetime

• In the implementation phase, analysis based on 𝛼 and 𝜎 shows that deterministic designs have network 
lifetimes approximately 9.44%, 11.15%, 11.94%, and 11.97% shorter across regions 𝑅1–𝑅4 compared to the 
robust model under baseline conditions (𝛼 = 0.05, 𝜎 = 1)

• As uncertainty increases, reductions reach 14.72%, 17.93%, 15.30%, and 21.75% in the most extreme cases. 



Computational 
Results

• Compared with deterministic design, the robust design 
consistently sustains lifetimes close to the reference 
target, offering more efficient utilization of allocations for 
extended operation.

• Region-wise analysis confirms that lifetime variability 
grows with increasing 𝛼 or 𝜎, highlighting the trade-off 
between robustness and performance.
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Conclusion and Future Work
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Conclusion:
• This paper introduces a robust optimization framework for UWSNs that ensures reliable target 

detection while maintaining energy efficiency under uncertainty. 

• By accounting for both regional and individual sensor deviations, the approach mitigates the 
vulnerabilities inherent in deterministic designs. 

• Comprehensive tests demonstrate that the robust design consistently outperforms deterministic 
methods, sustaining network performance even under spatial and sensing-rate variations.

Future Work:
• Future research will explore more complex deviation models and alternative deployment strategies 

to further enhance the robustness and resilience of UWSNs under diverse and unstructured 
conditions.
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