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RT-SIM: Generic Real-Time Simulation Platform
Motivation : Can we develop common simulation infrastructure templates for diverse 
applications? 

The internal research project RT-SIM at Capgemini Engineering develops assets and tools to realise this 
objective keeping in mind different sectors such as aerospace, orbital vehicles, rail transportation, etc.
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Current Focus Areas :
▪ Development of a space simulator
▪ Development of an avionics simulator
▪ Accelerating and facilitating the development of hybrid AI-based surrogate models to replace complex,
time consuming simulations.
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Physics-Enabled AI simulations Surrogates

Why use AI surrogate models to replace simulations of multi-physics/engineering systems?

Simulations of multi-physics / engineering 
systems 

▪ Time and resource consuming 
▪ Accurate but often inflexible
▪ Challenging in situations where the 

underlying physics is poorly understood
▪ High-fidelity models are too slow for real-

time

AI based Surrogate Models 

▪ Efficiency and Reduced Computational Load 
▪ Offers a good balance of accuracy and flexibility 
▪ Particularly useful in situations where the 

underlying physics is poorly understood or 
complex

▪ Fast enough for real-time simulations

▪ Physics-Enabled AI : A Hybrid Solution
▪ It combines AI speed with physical laws, enhancing their accuracy, generalization and 

interpretability, while also reducing data requirements.



5

Developing surrogate models is a complex, time-consuming and effort-intensive process that necessitates 
collaboration among multidisciplinary teams 

• Need for a tool that can help streamline this process and continuously update itself 

Problem Definition

Physical Phenomena of 
Interest

Performance Requirements 
/ Constraints

Data Collection and 
Preprocessing

Operational Data

Experimental Data

Simulation Data

Model Selection

Model Training

Performance Analysis

Model Development

Simulation & Test

Integration with Complex 
Systems

Verification and Validation

Deployment

Hardware in the Loop 
Testing

Export to Standard Format

Deployment

Process of developing surrogate models
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Proposed Workflow for Managing the Lifecycle of Surrogate
Models in Complex Simulations

System models/equations

Training and test Data

Performance 
requirements/Constraints

Recommendation 
Engine

Model Structure and 
training parameters

User Inputs

Training, 
validation 

and testing

Real-time simulation model

Conversion to 
standardized 

format

Ontology

Database of pre-trained models

Research AI/ML Literature & 
repositories

Opensource Libraries & 
datasetLLM/GenAI
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System models/equations

Training and test Data

Performance 
requirements/Constraints

Recommendation 
Engine

Model Structure and 
training parameters

User Inputs

Training, 
validation 

and testing

Real-time simulation model

Conversion to 
standardized 

format

Ontology

Database of pre-trained models

Research AI/ML Literature & 
repositories

Opensource Libraries & 
datasetLLM/GenAI

PAIRS

Focus of This Presentation : PAIRS “Physics-Enabled AI for
Real-Time Simulations Surrogates”
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Selecting the Right AI Model for Surrogate Simulation 
of Complex Engineering Systems

Challenge : Choosing the optimal neural network architecture and parameters is difficult due to the 
multitude of available options.

Solution : A recommendation system powered by an Ontology that connects:
• Physics-Informed Neural Network architectures
• Specific tasks or requirements 
• Data types and characteristics

User Interface (output)

Model structure and 
parameters

User Interface (input)

- Equations
- Training & Test data
- IC & BC
- Performance requirements

RECOMMENDATION System

Ontology
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Ontology of Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs):
• Embed physical laws (e.g., PDEs) into the training 

process to ensure physically consistent predictions.
• Require less data and remain robust even when 

data is noisy or incomplete.

Structure of PINNs:
• A Neural Network
• A Physics-Informed Module
• An Optimization Module
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Ontology of PINNs

.

• The ontology is developed using the Protégé open-source ontology editor.
• This ontology reduces exploration time and facilitates model selection by guiding users toward suitable 

neural network configurations.

Ontology of PINNs Visualized with OntoGraph



11

.

Ontology class diagram generated with OntoGraf, showing the main concepts: Data Types and 
Characteristics, Tasks, and Neural Network Types, along with their respective subclasses.

Ontology of PINNs
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A graph showing three types of neural networks and the links 
between these networks, data characteristics, and tasks.

Example of queries used to test the ontology

The queries performed on the ontology 
returned the expected results.

Ontology of PINNs



PAIRS Web Application: Model Recommendation

• PAIRS is a web-based interactive application built with Streamlit.
• It helps users explore, configure, and train PINNs model through a guided 

interface.
• The Recommendation System (RS) component uses the PINN ontology 

developed in Protégé.
• The recommendation system uses the OWL ontology via the owlready2 Python 

library to query and match relevant neural network models.
• Based on the data type and selected task, PAIRS recommends suitable PINN 

models with descriptions to support informed decision-making.
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PAIRS Web Application: Model Recommendation
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The data file uploaded by the user is
automatically analyzed to detect its type

The user can either:
• Select from predefined equation

examples, or
• Define a custom equation using

Python in a dedicated editor window
that appears upon selection.

The user chooses one or more tasks

The system recommends 
suitable PINN models
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PAIRS Web Application: Model Building, Training, and 
Testing

Parameter Configuration Model Building & Training

▪ Start after model selection.
▪ Set parameters:

▪ Use recommended defaults or 
custom values.

▪ Choose from ranges (e.g., learning 
rate, neurons, etc.).

▪ Select search strategy:
▪ Manual / Grid / Random

▪ Build model with selected 
parameters.

▪ Use user-defined equations in 
physics loss.

▪ Define input bounds → generate 
collocation points.

▪ Show dynamic loss plot during 
training.

▪ Apply early stopping at threshold.

▪ After training:
▪ Test on unseen data 

(actual vs. predicted).
▪ Save models with 

configs.
▪ Compare multiple 

models.

Model Evaluation, Saving & 
Comparison



Conclusion & Perspectives
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Future Directions
▪ Automatic ontology updates using Generative AI to keep pace with evolving architectures.
▪ Creation of a pretrained model database to accelerate deployment.
▪ Integration of AI agents to assist users in model selection, configuration, and training.
▪ Expansion beyond PINNs to cover a broader range of physics-informed ML models.

Purpose & Impact of PAIRS
▪ PAIRS Provides a streamlined solution for building physics-informed AI surrogate models, an 

efficient alternative to traditional, resource-intensive simulations.
▪ Offers a no-code/low-code interface, empowering engineers and researchers to develop models 

without deep expertise in AI.
▪ Designed to be scalable and adaptable: the ontology can be updated to include new models, tasks, 

and data types.
▪ PAIRS bridges the gap between simulation expertise and machine learning, making advanced 

modeling more accessible.
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