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Wave-dissipating block

• Crucial for dissipating wave energy 

and protecting coastal area, are 

commonly installed in harbors and 

seawalls 

• Placement determines stability and 

performance

Breakwater structure

• Installation target for blocks
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Fig. 1 Shake Block 4-ton variant and specifications [1]

[1] Honma Concrete Industry Co., Ltd, “Shake Block”, [Online] Available: 

https://www.honmacon.co.jp/02syouhin_list/01sye-kuburokku/01setumei.html, p. 3

Fig. 2 Offshore breakwater model

Mass 
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(𝒎𝟐)

3.991 39.138 1.735 9.796

Background



Background

4[2] wakamatsukowan, “Manufacture and installation of wave-dissipating blocks.,” [Online]

Available: https://www.wakamatsu-kk.com/blank-3

Current situation of installation work for wave-dissipating blocks

• Relies on the empirical knowledge and experience

• Trial and error on-site installation attempts

• Time-consuming and costly

• Hard to evaluate block placement

Placement of mat Placement of blocks Finished construction of breakwater

Fig. 3 Construction of breakwater [2]
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Motivation
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• Manual

• Inconsistent

• Labor-intensive

• Expensive

• Automation

• Reliable

• Scalable

• Objective solution

• Adaptive

• Long term

Artificial Intelligence (AI) has become relevant nowadays 

to tackle this problem



Related Works
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Xu’s Supervised CNN Approach [3]

• CNN trained on simulation-labelled poses

Pros

• Accurate

• Fast inference

Cons 

• Dataset dependence

• No adaptability

• Short-term greedy strategy

Fig. 4 Pipeline of block stacking operationPhysics-based Heuristic Approach

• Deterministic = No adaptability

• Break under uncertainty

[3] Y. Xu, A study on stacked object recognition and stacking operation planning combining 3D point cloud representation, deep-learning and 

physics engine, M.Eng. thesis, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan, 2020, 

doi:10.14943/doctoral.k15552.



Research Gap
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• Supervised CNN: Accurate but inflexible

• Heuristic: Fast but brittle

M
IS

SING

• Adapt to any conditions

• Planning strategically over multiple placements

S
O

LU
TION

• Reinforcement Learning (RL): Flexible

• Commonly used in robotics [4]

[4] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation,” in Proceedings of the 

IEEE International Conference on Robotics and Automation (ICRA), pp. 3389-3396, 2017.



Why Reinforcement Learning?
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Adaptability

• Learn policies

• Generalize across 

different blocks and 

structure types

Strategic 
Optimization

• Multiple block placements

• Optimize long terms 

rewards

Reduced Data 
Dependency

• Learn from interaction

• Reduce reliance on 

dataset generation



3D-BW (3D Breakwater Simulator) [5]
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• Developed based on Unity, a three-dimensional game development software 

since 2023

• Provides platform for off-site training

• Incorporates with ML-Agent, an open-source project that enables games and 

simulations to serve as environments for training intelligent agents

Fig. 6 Interface of 3D-BW

Copyright (C) 2025 Chuah Hao Min All Right Reserved
[5] Chuah, H. M., Yamazaki, T., Iwasawa, R., Suto, T.: Development of Wave-Dissipating Block Installation for Inexperienced Worker Training. 

World Academy of Science, Engineering and Technology, International Journal of Computer and Systems Engineering vol. 18, no. 03 (2024)

Fig. 5 Flow of RL using ML-Agents
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[6] Q. Zheng, PPO: Easy Concepts & Implementation, LinkedIn, 2023. [Online]. Available: https://www.linkedin.com/pulse/ppo-easy-concepts-

implementation-qiaomu-zheng-nnrue/. [Accessed: Sept. 21, 2025]

Proximal Policy Optimization (PPO)

• Algorithm that updates the policy of the agent

• Policy: Strategy the agent uses to decide what action to take given its current 

observation or state

• The agent interacts with the environment

• Observation: What it sees

• Action: What it does

• Reward: Feedback

• Advantages

• Improves action (Learning from reward)

• Avoids changing the policy too drastically 

(Stability)
Fig. 7 PPO Flowchart [6]



Observation

𝑜𝑏𝑠𝑥,𝑧 =
𝑟𝑜𝑜𝑓𝐻𝑒𝑖𝑔ℎ𝑡𝑥,𝑧 − 𝑏𝑙𝑜𝑐𝑘𝐻𝑒𝑖𝑔ℎ𝑡𝑥,𝑧

max
𝑖,𝑗

𝑟𝑜𝑜𝑓𝐻𝑒𝑖𝑔ℎ𝑡𝑖,𝑗 − 𝑏𝑙𝑜𝑐𝑘𝐻𝑒𝑖𝑔ℎ𝑡𝑖,𝑗

• Convert the breakwater into a 2D grid map

• Normalize the differences between block vertices 

and structure vertices in each grid cell

• Transform it into a gap map

Action

• Drop from a fixed height

• Selects a discrete placement coordinate (x, z) from the grid map

• Randomized rotation angle

Fig. 7 Example of a grid map 

of 128x128
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Proposed Reward Design

：Empty Spaces ：Distance moved：Height

Compactness Slope Stability Overflow
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Difference between volume before 

and after within breakwater

Height difference between 

neighbouring cells

Distance moved 

after dropping block

Overflowing from the 

top/side of breakwater
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Challenges

Possible solutions

1. Curriculum learning: Gradually increase difficulty 

2. Behavioural Cloning: Imitating expert demonstrations

Computational Cost

• Training takes time and 

resources

Reward Sensitivity

• Too strong/weak signals 

lead to poor polices

Slow Exploration

• May waste many episodes 

on random moves



Conclusion
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• Propose an RL approach for automating and optimizing the placement of 

wave-dissipating blocks

• RL = Adaptability + Strategic optimization

• Careful reward design is compulsory
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Future Work

• Simple experiment to test reward design

• Refine reward design

• Multiple test cases to test adaptability
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