Hochschule Karlsruhe

University of **Applied Sciences**

Institute of **Energy Efficient Mobility**

Highly-Modular and Immersive Human-in-the-Loop Driving Simulators Using the CARLA Simulation Environment

Brief Biography of Patrick Rebling

Education and Experience:

- Master's Degree in Automotive Systems Engineering from Karlsruhe University of Applied Sciences
- Software Development Engineer for Demonstrators for Automated Driving at ITK Engineering GmbH / Steinbeis
- Research Assistant at the Institute of Energy Efficient Mobility

Research Interests:

- Driving, bicycle, and pedestrian simulators for human-in-the-loop
- Modelling of human-like driving behavior
- Human-Machine-Interactions in mixed traffic scenarios

Why using human-in-the-loop driving simulators?

Current Challenges and Our Goal

GOAL:

Developing an open and modular framework based on an immersive simulation environment for rapid prototyping and easy deployment of driving simulators

Why CARLA?

Scenario Generation and Execution in CARLA

CARLA Scenario
Runner /
Leaderboard

Interactive simulator environment with deterministic traffic participant behavior

Overview of Approach

Approach in Detail

- Usage of ROS where data has to be logged
- Usage of API for performance relevant parts
- Display controller for mirrors and specific cameras
- State-Chart for vehicle light state

- Dynamic generated UI for dashboard and touchscreen interfaces
- CANopen interface for CAN communication (proprietary devices)

HKA

Display Controller

- > Determination of parameters of user setup
- Calculation of camera positions and rotations
- Resulting in seamless image on monitor setup
- ➤ Single monitor → single camera support

Secondary Display Controller

- > Settings for rear mirrors
- > Separated processes for multi-threading

HIKA

Input Handling

Mapping of raw inputs from joysticks into CARLA commands (as ROS topic)

Karlsruhe University of Applied Sciences

State Machine for Light Control

- > State Machine for light control (especially indicator and hazard lights)
- State Machine is integrated into Lange Change Assists
- Position lights, low and high-beam are separated

Force Feedback Control

- Instead of vehicle wheel control, steering wheel control
- Active steering wheel while lane keeping
- Take over to driver by torque tracking:

$$T_{limit} \leq T_{current} \rightarrow \text{Disable LKAS}$$

- Realistic steering forces (e.g. Pacejka model)
- Support of
 - > Self-Aligning-Torque (Centering)
 - Counter Torque
 - Collision Impulses / Vibration
 - Damping

Reconfiguration for new Simulator Hardware

- Reconfiguration for new simulator hardware only needs adaptions to config file (best case)
- For proprietary hardware, abstracted interface classes are provided (e.g. for motion platforms)
- Configuration described in documentation for easy use

```
# control parameters #
control:
 ## joystick mapping ##
 joysticks:
    - index: 0
      axes:
        steer:
          axis: 0
          range: [-1, 1]
          dead_zone: 0.005
        brake:
          axis: 3
          range: [-1, 1]
          dead zone: 0.005
        throttle:
          axis: 4
          range: [-1, 1]
          dead_zone: 0.005
    - index: 1
     handbrake_button: 1
     reverse_button: 0
      manual_gear_button: 2
      gear_up_button: 3
      gear_down_button: 4
```

e.g. Control section

Joystick related information, steering and pedal axes defined here; ranges will be mapped to CARLA ranges

Further control buttons for CARLA on different joystick

HKA

Reconfiguration for new Simulator Hardware

Simple driving simulator for development of the framework

Local Config File

Local Config File

HIKA

Dashboard und User Interfaces

Future Vision/Current Work: CARLAverse

- Base line for driving simulators and integration of autonomous driving functions is done
- Completely Open Source*
- ➤ Multi-GPU, Multi-Server Support
- Connect different simulator types
- Connect multiple driving simulators
- Acoustics engine for CARLA
- Motion engine with motion cueing

Summary

Challenge:

- Existing simulators are either costly
- Proprietary or lack immersion
- Easy hardware integration

Solution:

- An open, modular framework using CARLA for immersive and easily configurable driving simulators
- Baseline development completed

Key Features:

Abstracted interfaces and YAML configuration enable rapid hardware setup and easy reconfiguration

Future Vision:

CARLAverse – an ecosystem connecting multiple simulator types (driving, pedestrian, bicycle) with multi-GPU and multiserver support

Thank you for your Attention

Patrick Rebling, Lars Beeh, Philipp Nenninger, Reiner Kriesten

Karlsruhe University of Applied Sciences – Institute of Energy Efficient Mobility

Contact E-Mail: patrick.rebling@h-ka.de

With funding from the:

Supporters of the Driving Simulators:

