Minecraft of System Modeling

Pavel Loskot pavelloskot@intl.zju.edu.cn

The Tenth International Conference on Advances in Signal, Image and Video Processing SIGNAL 2025 March 09, 2025 to March 13, 2025 - Lisbon, Portugal

Авоит Ме

Pavel Loskot joined the ZJU-UIUC Institute as Associate Professor in January 2021. He received his PhD degree in Wireless Communications from the University of Alberta in Canada, and the MSc and BSc degrees in Radioelectronics and Biomedical Electronics, respectively, from the Czech Technical University of Prague. He is the Senior Member of the IEEE, Fellow of the HEA in the UK, and the Recognized Research Supervisor of the UKCGE. He was elected the IARIA 2025 Fellow.

In the past nearly 30 years, he was involved in numerous industrial and academic collaborative projects in the Czech Republic, Finland, Canada, the UK, Turkey, and in China. These projects concerned wireless and optical telecommunication networks, and also genetic regulatory circuits, air transport services and renewable energy systems. This experience allowed him to truly understand the interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on mathematical and probabilistic modeling, statistical signal processing and classical machine learning for multi-sensor data in biomedicine, computational molecular biology, and wireless communications.

OBJECTIVES

- estimate model parameters from quantized noisy inputs and outputs
 - \rightarrow this is a standard problem of model identification
 - \rightarrow quantization is akin to Minecraft modeling
- assumptions
 - \rightarrow system model inputs and outputs are noisy constants
 - \rightarrow system model is linearized
- compare the variances of ML estimators with quantized observations
 - \rightarrow uniform and binary quantization
 - \rightarrow unquantized measurements

OUTLINE

- System model
- Parameter estimation
- Maximum-likelihood estimator
- Numerical examples

System Model

Quantization

- implicit
 - \rightarrow measuring equipment with limited resolution
- explicit
 - \rightarrow reduce storage and computing requirements

Measurements

 $E[x] \neq Av[E[x]] \neq Av[x] \Leftrightarrow non-ergodic \& non-stationary$

SYSTEM MODEL (2)

Linear SISO model

$$y = a_0 + \sum_{i=1}^p a_i \phi_i(x), \quad \left\langle \phi_i, \phi_j \right\rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Measurements

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & \phi_1(x_1) & \cdots & \phi_p(x_1) \\ \vdots & \vdots & & \vdots \\ 1 & \phi_1(x_n) & \cdots & \phi_p(x_n) \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_p \end{bmatrix}$$
$$\mathbf{y} = \mathbf{\Phi}(\mathbf{x}) \cdot \mathbf{a}$$

Linearization

$$\phi_i(x) \doteq \phi_i(x_0) + \dot{\phi}_i(x_o)(x - x_0)$$

$$\Rightarrow \quad y = a_0 + \sum_{i=1}^p a_i (A_i x + B_i) \quad \Rightarrow \quad \begin{cases} A_i = \dot{\phi}_i(x_0) \\ B_i = \phi_i(x_0) - \dot{\phi}_i(x_0) x_0 \end{cases}$$

SYSTEM MODEL (3)

Uniform quantization

$$\check{x} = Q(x) = \left\lfloor \frac{x - \Delta/2}{\Delta} \right\rfloor + 1 \in \mathbb{Z}$$
$$\Delta(\check{x} - 1/2) \le x < \Delta(\check{x} + 1/2) \quad \text{(quantization error)}$$

Binary quantization

$$\check{x} = Q_2(x) = \operatorname{sign}(x) \in \begin{cases} +1, \\ -1 \end{cases}$$

Example: $y = \frac{3}{2}x$

PARAMETER ESTIMATION

Measurements $i = 1, 2, \ldots, n$

$$y_{i} = \bar{y} + \epsilon_{yi} \implies E[x_{i}y_{i}] = \bar{x}\bar{y} + \underbrace{E[\epsilon_{xi}\epsilon_{yi}]}_{\neq 0}$$

Linearized model

$$\mathbf{y} = \left[\mathbf{1}_{(n,1)} \mid \bar{\mathbf{\Phi}}(\bar{x}) + \boldsymbol{\epsilon}_{x} \cdot \dot{\boldsymbol{\phi}}^{T}(\bar{x})\right] \cdot \boldsymbol{a}$$

The LS model fitting

$$\mathrm{LS}(a_0, \boldsymbol{a}) = \sum_{i=1}^n \left(y_i - a_0 - \left(\dot{\boldsymbol{\phi}} \, \boldsymbol{\epsilon}_{xi} + \boldsymbol{\phi} \right)^T \cdot \boldsymbol{a} \right)^2 \quad \Rightarrow \quad \frac{\partial}{\partial a_0} \mathrm{LS}(\hat{a}_0, \hat{\boldsymbol{a}}) = 0$$
$$\frac{\partial}{\partial \boldsymbol{a}} \mathrm{LS}(\hat{a}_0, \hat{\boldsymbol{a}}) = \mathbf{0}$$

$$\Rightarrow \begin{cases} \hat{a}_{0} = \operatorname{Av}[y_{i}] - (\dot{\phi}\operatorname{Av}[\epsilon_{xi}] + \phi)^{T} \hat{a} \\ \hat{a} = (\dot{\phi}\dot{\phi}^{T})^{-1} \dot{\phi} \frac{\operatorname{Av}[\epsilon_{xi}\epsilon_{yi}]}{\operatorname{Av}[(\epsilon_{xi} - \bar{\epsilon}_{x})^{2}]} + (\dot{\phi}\dot{\phi}^{T})^{-1} \phi \frac{\operatorname{Av}[\epsilon_{yi}]}{\operatorname{Av}[(\epsilon_{xi} - \bar{\epsilon}_{x})^{2}]} \\ = 0 \text{ for } n \gg 1 \end{cases}$$

PARAMETER ESTIMATION (2)

A SISO case

$$\hat{a}_0 = \bar{y} - \hat{a}_1 \bar{x}$$
, $\hat{a}_1 = \frac{\operatorname{Av}[(y_i - \bar{y})(x_i - \bar{x})]}{\operatorname{Av}[(x_i - \bar{x})^2]}$

• if the inputs and outputs are noisy constants, and $n \gg 1$

$$MSE(\hat{a}_0, \hat{a}_1) = E\left[\epsilon_{yi}^2\right] - \frac{E\left[\epsilon_{xi}\epsilon_{yi}\right]^2}{E\left[\epsilon_{xi}^2\right]}$$

Alternative strategy for model identification

- 1. accurately estimate the constant inputs and outputs
- 2. linearize the model about these estimates
- 3. invert the model: $a = \Phi^{-1}(x) \cdot y$

Estimating noisy constant

- minimum variance unbiased (MVUB) estimator
 → best linear unbiased (BLUE) estimator
- LS estimator
 - \rightarrow performs poorly
- maximum-likelihood estimator

MAXIMUM-LIKELIHOOD ESTIMATOR

Strategy

- assume SISO model
- measurement noises are AWGN, and measurements are independent
- measurements are quantized (uniform or binary)
- better to consider the log-likelihood
- linearize Gaussian Q-function and its derivative

Specifically

$$\frac{\partial}{\partial \bar{x}} \log \Pr(\{\check{x}_i\}_i) = -\frac{1}{\sigma} \sum_{i=1}^n \frac{\dot{Q}\left(\frac{\Delta(\check{x}_i - 1/2) - \bar{x}}{\sigma}\right) - \dot{Q}\left(\frac{\Delta(\check{x}_i + 1/2) - \bar{x}}{\sigma}\right)}{Q\left(\frac{\Delta(\check{x}_i - 1/2) - \bar{x}}{\sigma}\right) - Q\left(\frac{\Delta(\check{x}_i + 1/2) - \bar{x}}{\sigma}\right)}$$

$$Q(x) \approx Q(x_0) - \frac{1}{\sqrt{2\pi}} e^{-x_0^2/2} (x - x_0)$$
$$\dot{Q}(x) \approx \frac{1}{\sqrt{2\pi}} e^{-x_0^2/2} (x_0 x - x_0^2 - 1)$$

MAXIMUM-LIKELIHOOD ESTIMATOR (2)

ML estimators

$$\hat{\bar{x}} = \Delta \frac{1}{n} \sum_{i=1}^{n} \check{x}_i$$
$$\hat{\bar{x}} = \sigma \sqrt{\frac{\pi}{2} \frac{1}{n}} \sum_{i=1}^{n} \check{x}_i$$
$$\hat{\bar{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

10

(uniform quantization)

(binary quantization)

(no quantization)

Variances

- derived in the paper
- for uniform quantization
 - \rightarrow best case: no quantization error
 - \rightarrow worst case: maximal quantization error
- approximations
 - \rightarrow measurement noise comparable or smaller than quantization noise

NUMERICAL EXAMPLES

Uniform quantization

NUMERICAL EXAMPLES (2)

Binary quantization

TAKE-HOME MESSAGES

System identification

- if inputs and outputs are static (noisy constants)
- LS fitting performs poorly
- much better is to estimate inputs and outputs from multiple measurements
 → different estimators available
- then linearize and invert the model

Key observations

- with static inputs, system model can be readily linearized
- quantization noise can be neglected if comparable to measurement noise
- if this is not the case
 - \rightarrow the estimators are no longer unbiased and consistent

Direct implications

- supervised machine learning
- physical laws
 - \rightarrow Schrödinger and Maxwell's equations are linear
- Minecraft perception of reality

Thank you!

pavelloskot@intl.zju.edu.cn