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to truly understand the interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on mathematical and probabilistic modeling, statistical signal

processing and classical machine learning for multi-sensor data in biomedicine, computational

molecular biology, and wireless communications.
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Objectives

• estimate model parameters from quantized noisy inputs and outputs

→ this is a standard problem of model identification

→ quantization is akin to Minecraft modeling

• assumptions

→ system model inputs and outputs are noisy constants

→ system model is linearized

• compare the variances of ML estimators with quantized observations

→ uniform and binary quantization

→ unquantized measurements

Outline

• System model

• Parameter estimation

• Maximum-likelihood estimator

• Numerical examples
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System Model
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Quantization

• implicit

→ measuring equipment with limited resolution

• explicit

→ reduce storage and computing requirements

Measurements

E[x] , Av[E[x]] , Av[x] ⇔ non− ergodic & non− stationary
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System Model (2)

Linear SISO model

y = a0+

p∑

i=1

aiφi(x),
〈

φi,φ j

〉

=
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1, i = j

0, i , j

Measurements
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...
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



yyy = ΦΦΦ(xxx) ·aaa
Linearization

φi(x) � φi(x0)+ φ̇i(xo)(x− x0)

⇒ y = a0+

p∑

i=1

ai(Aix+Bi) ⇒
{

Ai = φ̇i(x0)

Bi = φi(x0)− φ̇i(x0)x0
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System Model (3)

Uniform quantization

x̌ = Q(x) =

⌊

x−∆/2
∆

⌋

+1 ∈ Z

∆(x̌−1/2) ≤ x < ∆(x̌+1/2) (quantization error)

Binary quantization

x̌ = Q2(x) = sign(x) ∈





+1,

−1

Example: y = 3
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Parameter Estimation

Measurements i = 1,2, . . . ,n

yi = ȳ+ ǫyi

xi = x̄+ ǫxi

⇒ E
[

xiyi

]

= x̄ȳ+E
[

ǫxiǫyi

]

︸   ︷︷   ︸

,0

Linearized model

yyy =
[

1(n,1) | Φ̄ΦΦ(x̄)+ ǫǫǫ x · φ̇φφ
T
(x̄)
]

·aaa

The LS model fitting

LS(a0,aaa) =

n∑

i=1

(

yi−a0−
(

φ̇φφǫxi+φφφ
)T ·aaa
)2

⇒
∂
∂a0

LS(â0, âaa) = 0

∂
∂aaa

LS(â0, âaa) = 0

⇒






â0 = Av
[

yi

]−
(

φ̇φφAv[ǫxi]+φφφ
)T

âaa

âaa =
(

φ̇φφφ̇φφ
T
)−1
φ̇φφ

Av[ǫxiǫyi]
Av[(ǫxi−ǭx)2]

+

(

φ̇φφφ̇φφ
T
)−1
φφφ

Av
[

ǫyi

]

Av
[

(ǫxi− ǭx)2
]

︸                         ︷︷                         ︸

=0 for n≫1
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Parameter Estimation (2)

A SISO case

â0 = ȳ− â1 x̄ , â1 =
Av
[

(yi− ȳ)(xi− x̄)
]

Av
[

(xi− x̄)2
]

• if the inputs and outputs are noisy constants, and n≫ 1

MSE(â0, â1) = E
[

ǫ2yi

]

−
E
[

ǫxiǫyi

]2

E
[

ǫ2
xi

]

Alternative strategy for model identification

1. accurately estimate the constant inputs and outputs

2. linearize the model about these estimates

3. invert the model: aaa = ΦΦΦ−1(xxx) · yyy

Estimating noisy constant

• minimum variance unbiased (MVUB) estimator

→ best linear unbiased (BLUE) estimator

• LS estimator

→ performs poorly

• maximum-likelihood estimator
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Maximum-Likelihood Estimator

Strategy

• assume SISO model

• measurement noises are AWGN, and measurements are independent

• measurements are quantized (uniform or binary)

• better to consider the log-likelihood

• linearize Gaussian Q-function and its derivative

Specifically

∂

∂x̄
logPr({x̌i}i) = −

1

σ

n∑

i=1

Q̇
(
∆(x̌i−1/2)−x̄

σ

)

− Q̇
(
∆(x̌i+1/2)−x̄

σ

)

Q
(
∆(x̌i−1/2)−x̄

σ

)

−Q
(
∆(x̌i+1/2)−x̄

σ

)

Q(x) ≈ Q(x0)− 1
√

2π
e−x2

0
/2(x− x0)

Q̇(x) ≈ 1
√

2π
e−x2

0
/2(x0x− x2

0−1)
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Maximum-Likelihood Estimator (2)

ML estimators

ˆ̄x = ∆
1

n

n∑

i=1

x̌i (uniform quantization)

ˆ̄x = σ

√

π

2

1

n

n∑

i=1

x̌i (binary quantization)

ˆ̄x =
1

n

n∑

i=1

xi (no quantization)

Variances

• derived in the paper

• for uniform quantization

→ best case: no quantization error

→ worst case: maximal quantization error

• approximations

→ measurement noise comparable or smaller than quantization noise
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Numerical Examples

Uniform quantization
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Numerical Examples (2)

Binary quantization
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Take-Home Messages

System identification

• if inputs and outputs are static (noisy constants)

• LS fitting performs poorly

• much better is to estimate inputs and outputs from multiple measurements

→ different estimators available

• then linearize and invert the model

Key observations

• with static inputs, system model can be readily linearized

• quantization noise can be neglected if comparable to measurement noise

• if this is not the case

→ the estimators are no longer unbiased and consistent

Direct implications

• supervised machine learning

• physical laws

→ Schrödinger and Maxwell’s equations are linear

• Minecraft perception of reality
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