

Development of an Artificial Fingertip with a High-Sensitivity
3-Axis Force Tactile Sensor Embedded for Robotic Hands

Bo-Gyu Bok¹, Jin-Seok Jang¹, Min-Seok Kim^{1*}

¹ Convergence Research Center for Meta-Touch, Korea Research Institute of Standards and Science. wcsp@kriss.re.kr

Short resume

Research interests

I am currently focused on <u>developing tacti</u> le <u>sensors</u> that can <u>contribute</u> to <u>enhanci</u> ng the object manipulation abilities of rob ots. In addition, I am simultaneously work ing on <u>methodologies</u> to quantify the tactil e sensations experienced by humans, alo ng with the development of tactile sensor s for quantification.

<ිं} Skills

- 2D & 3D CAD design
- MEMS fabrication
- · Measurement & Analysis

Contact

- +82-42-868-5395
- <u>wcsp@kriss.re.kr</u>
- 267 Gajeong-ro, Yuseong-gu, Da ejeon 34113, Republic of Korea

Bo-Gyu Bok

Senior Technician

(~ 2016)

B.S. Chungnam National University
Chemistry

 (~ 2019)

M.S. Yonsei University

Electrical & Electronic Engineering

 (~ 2023)

Ph.D. University of Science and Technology Measurement Engineering

Experience

(2023 - Current)

Senior Technician

Korea Research Institute of Standards and Science (KRISS)

- 01 Introduction
- 02 Experiment
- **03** Sensor Evaluation
- **04** Summary

01
Introduction

Introduction

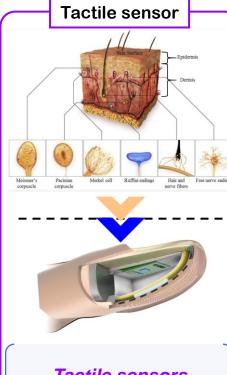
Rationale for Research and Development

Background

High-Risk Environments

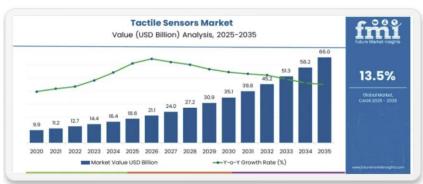
Medical & Domestic Applications

Dexterity in robotics



With the diversification of objects handled by robots, <u>the demand</u> for dexterity in robotics is growing

Tactile sensors


mimicking human touch are gaining attention

Introduction

Rationale for Research and Development

Global Market Trends and Development Status of Tactile Sensors

Tactile sensor market forecast (2020-2035)

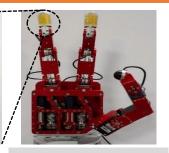
- Tactile Sensors Market Forecast Value (2035): USD 66.0 billion
- Tactile Sensors Market Forecast CAGR: 13.5%

SynTouch

XELA Robotics


GelSight

AIDIN Robotics


<u></u>

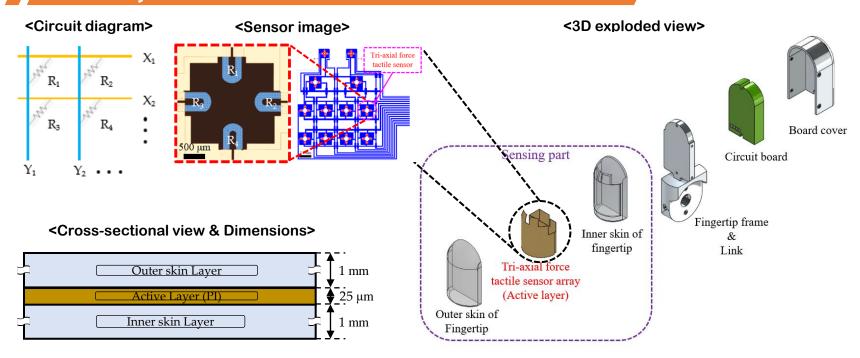
<u>Vulnerability in detecting physical quantities</u> generated at the contact area due to the <u>absence of a high-sensitivity 3-axis</u> <u>force sensor array</u>

Our research concept

Artificial fingertip with tactile sensor

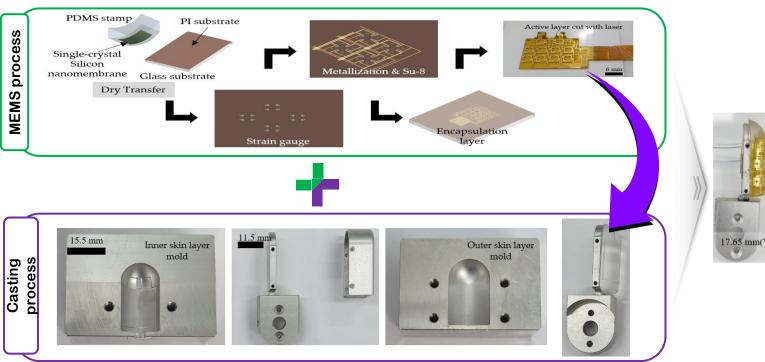
Example Image of the Hand in Integrated State

Development of an Artificial Fingertip Embedded with a High-Sensitivity 3-Axis Force Tactile Sensor Array for Robotic Hands


O₂
Experiment

Experiment

Design & Fabrication


- We arranged **four horseshoe-shaped strain gauges** based on single-crystal silicon nanomembranes in an NESW (north–east–south–west) arrangement <u>separated by 90° to form a single taxel</u>. → **Total 12 taxels** (<u>Spatial resolution: 1.4 ~ 3.4 mm</u>)
- To minimize the number of signal lines, we implemented **a matrix-type wiring** method with a total of 14 signal lines consisting of eight rows (X) and eight columns (Y) that are used to readout the resistance readings of 48 strain gauges.
- To <u>overcome the disadvantage of inorganic materials</u>, we adopted the strategy, which is **a hybrid structure** where the <u>sensing layer(PI)</u> is placed in between layers of a polymer-based elastomer material (PDMS).

Experiment

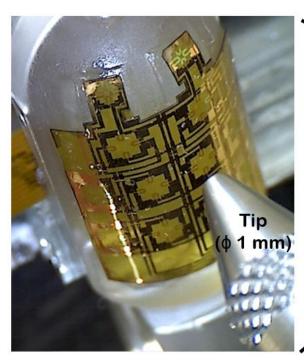
Design & Fabrication

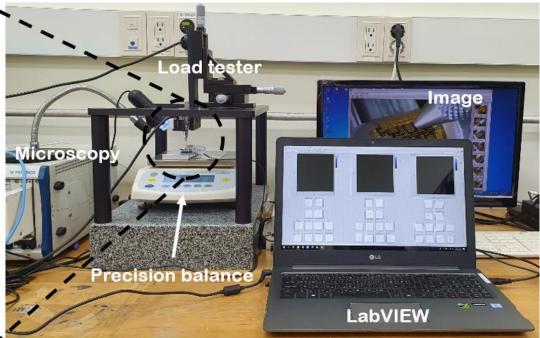
Fabrication process

- The **fabrication process** of our sensing device (which has a hybrid structure) can be subdivided into **two parts**: a sensing layer fabrication process (<u>MEMS process</u>), and the skin layer fabrication process (<u>Casting process</u>).
- We transfer <u>single crystal silicon nanomembrane</u> (100 nm) to PI substrate (25 μm) through **Dry transfer technology**.
- The size of the fingertip developed through a series of fabrication processes is 17.65 mm(W) x 53 mm(L) x 20 mm(t) (Full size).

03

Sensor Evaluation

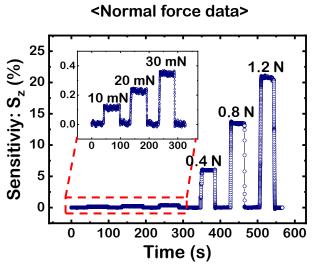

Sensor Evaluation

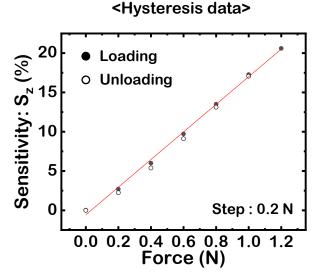


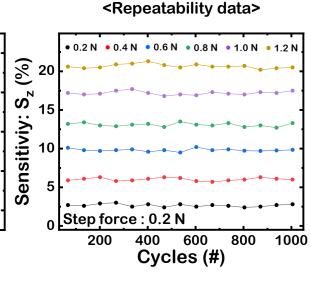
Performance Tests

Measurement setup

<Tri-axial force measurement setup>


- To evaluate the performance of <u>tri-axial force sensing characteristics</u>, we placed the sensor on a precision balance and applied a load by pressing on the center of the bump using a 1 mm-sized metal tip.
- The sensor signals obtained in the process of evaluation were transmitted to the PC through a circuit board, and these were acquired using the Labview program.


Sensor Evaluation



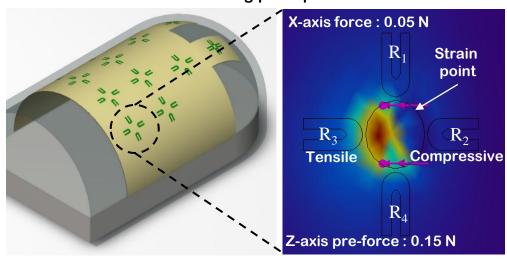
Performance Tests

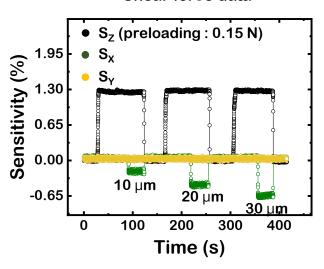
Mechanical properties (Normal force)

•
$$F_{\rm z} = \alpha_{\rm z} S_Z = \alpha_{\rm z} \left(\frac{1}{4} \left(\sum_{i=1}^4 \frac{\Delta R_i}{(R_i)_0} \right) \times 100(\%) \right)$$

- Hysteresis error = $\frac{S_{z_{Loading}} S_{z_{Unloading}}}{FSO} \times 100(\%)$
- Repeatability error = $\frac{\sigma_{Sz}}{FSO} \times 100(\%)$
- $\star \, \Delta R_i = R_i (R_i)_0 \quad \star \, FSO = Full \, Scale \, Ouput$

- Sensitivity coefficient (α_z): 0.057 %/ N (R²=0.997)
 - Sensing range : $\sim 1.2 \text{ N}$ Hysteresis error : < 3 %
 - Resolution: 10 mN Repeatability error: < 2 %


Sensor Evaluation


Performance Tests

Mechanical properties (Shear force)

<Sensing principle>

<Shear force data>

•
$$F_X = \alpha_X S_X = \alpha_X \left(\left(\frac{\Delta R_2}{(R_2)_0} - \frac{\Delta R_3}{(R_3)_0} \right) \times 100(\%) \right)$$
 • $E_{XZ} = \left| \frac{\Delta S_Z}{\Delta S_X} \right| \times 100(\%)$

•
$$F_y = \alpha_y S_y = \alpha_y \left(\left(\frac{\Delta R_1}{(R_1)_0} - \frac{\Delta R_4}{(R_4)_0} \right) \times 100(\%) \right)$$

•
$$E_{xz} = \left| \frac{\Delta S_z}{\Delta S_x} \right| \times 100(\%)$$

•
$$E_{xy} = \left| \frac{\Delta S_y}{\Delta S_x} \right| \times 100(\%)$$

*
$$\Delta S_{x,y,z} = (S_{x,y,z})_{\text{after movement}} - (S_{x,y,z})_{\text{before movement}}$$

Cross-talk error (E): < 3 %

04 Summary

- ➤ We developed <u>an anthropomorphic robot fingertip</u> similar in size to a human finger with a builtin highly sensitive tri-axial force tactile sensor.
- The tactile sensor was designed to detect **tri-axial force distribution**, and slip based on a <u>hybrid structure</u> that can have both the high sensitivity characteristics of inorganic materials (Single-crystalline silicon) and the mechanical flexibility of PDMS.

Single-crystalline silicon

- ✓ High gauge factor
- ✓ Greater mechanical & chemical stability
- ✓ Stable sensing performance

PDMS

- ✓ Mechanical flexibility
- Mechanical properties(e.g., hardness) can be easily controlled.
- ✓ Easy to bond with layers consisting of the same materials.

In the near future, we will demonstrate that it is possible to determine various contact states that occur during object manipulation by analyzing the sensor outputs.

Thank you for your attention!

Reference

- https://bostondynamics.com/atlas/
- https://www.figure.ai/news/helix
- https://mediahub.seoul.go.kr/archives/2013837
- https://www.chosun.com/kid/kid_literacy/kid_sisanews/2022/08/01/X3GT6W5SO3KPBJSRLR6ZLWUDY4/
- https://www.linkedin.com/pulse/9-exciting-facts-medical-robots-bertalan-mesk%C3%B3-md-phd
- https://newatlas.com/biotac-tactile-robot-finger/23002/
- Trends and challenges in robot manipulation. Science 364.6446 (2019): eaat8414.
- https://tacniq.ai/
- https://schunk.com/kr_ko/hompeiji/saengmyeong-gwahag/
- An overview of dexterous manipulation. Proceedings 2000 ICRA
- A survey of robot tactile sensing technology. IJRR (1989)
- Tactile sensing—from humans to humanoids. IEEE T-RO (2009)
- https://www.futuremarketinsights.com/reports/tactile-sensors-market
- https://spectrum.ieee.org/startup-spotlight-syntouch
- https://www.xelarobotics.com/
- https://pages.gelsight.com/digit-tactile-sensor
- https://www.aidinrobotics.co.kr/robotic-hand