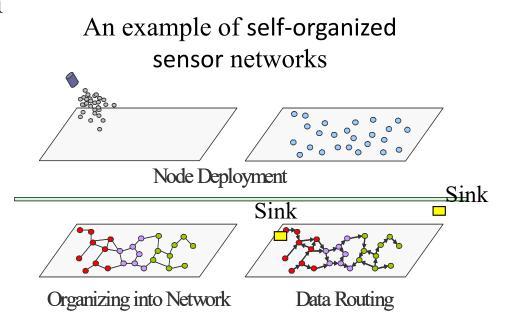
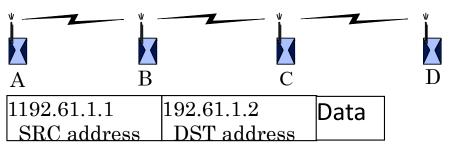
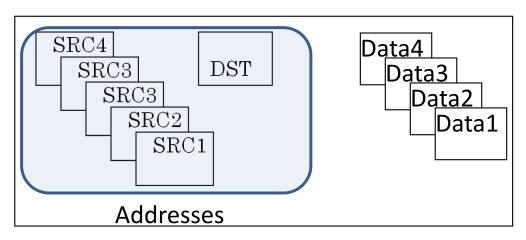
Prioritized Self-Configuration for Self-Organized Sensor Networks


Rui Teng,
Qilu Normal University
October, 2025

Rui Teng is a professor at Qilu Normal University, China. His research interest includes Internet of Things (IoT), self-organizing systems, and smart energy.

Features of Wireless Sensor Networks


- Energy-efficient communication
 - A sensor node has three functional components: sensing, computing, communication.
 - Power supply from a battery
- Self-organization
 - Free deployment of sensor nodes
 - Self-configuration
 - Self-optimization


Node Addressing in Sensor Networks

- Functions of node addresses in sensor networks
 - Use as the node identifier (ID) for packet routing
 - Use as the data source ID to distinguish sensing data
 - Use as the alternative of sensor name or data's name
- Requirement of sensor addresses
 - Address auto-configuration
 - Energy efficiency

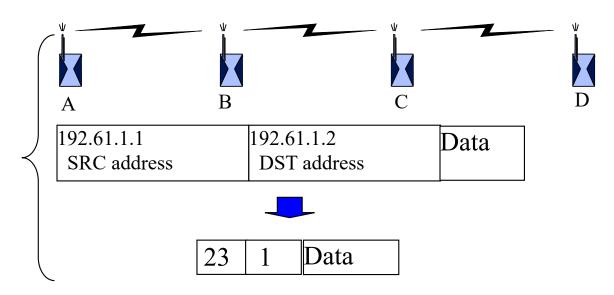
An example of sensor data reports

An example of aggregated data reports

Conventional Addressing Approaches

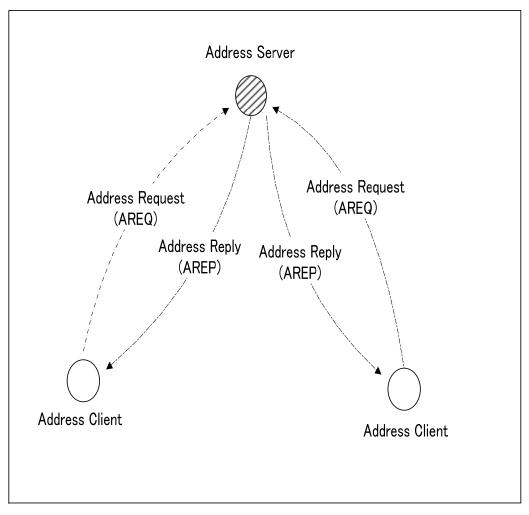
Addressing in the Internet

- Address representations in the Internet Protocol
 - IP address
 - Global Unique
 - 32 bits IPv4 address, 128bits IPv6 address
- Address Configuration in the Internet Protocols
 - Manual setup
 - Dynamic address configuration, Such as DHCP


Addressing in the MANET (Mobile Ad hoc Network)

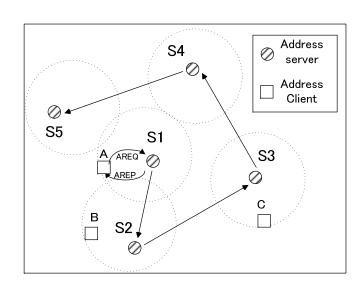
- Network-layer address
 - IP Address
- Address Configuration:
 - Manual setup of address
 - Auto-configuration
 - Fundamental approach:
 DAD (Duplicate address detection)
 - Dealing with Network partition and merge
 - Routing based configuration

Desired Address Representation in Sensor Networks


- Smallest address size
 - Avoid using long-size global unique addresses
 e.g., IPv4 with 32bits; IPv6 with128 bits

An example of sensor data reports

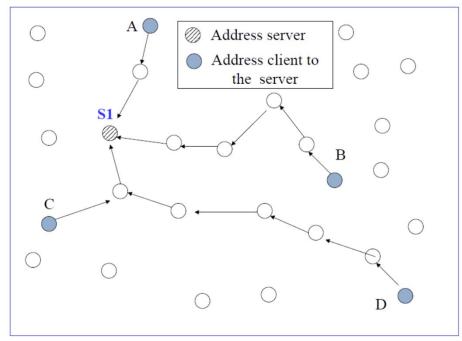
Dynamic Server-client Based Configuration

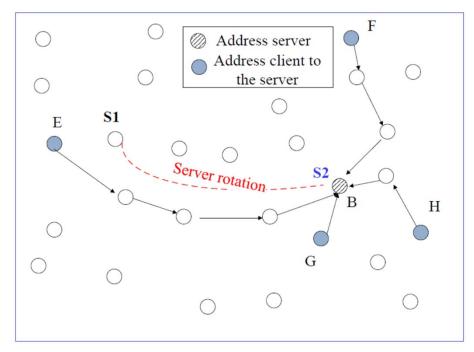

- Initially, an address server is randomly selected.
- The role of address server is to assign address to sensors that request addresses
- The address clients that request addresses send Address Request (AREQ) message to the server to ask for addresses.
- The address serve responses to each AREQ by assigning the address client with a unique address, which is included in the Address Reply(AREP) message.

Automaticaly selected address server

Dynamic Roles of Address Server

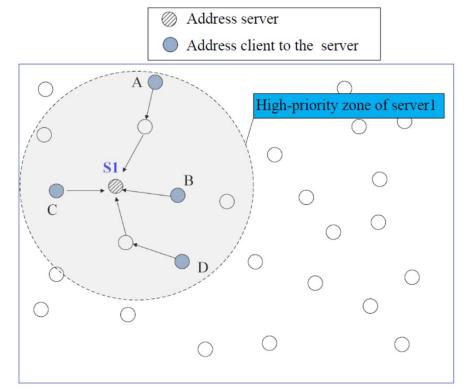
- To balance the energy consumption, the role of address server is rotated around sensors in the network.
- This is realized by setting a limited server term at each address server.

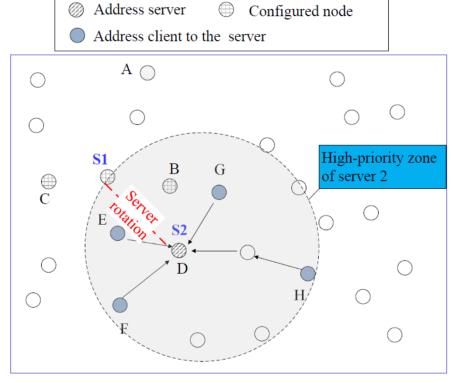

Address server rotation


Server term control

Configuration Distance Problem

- Problems of long topological distance between sensor client and server
 - Large energy consumption
 - Configuration latency


Address configuration with server 1


Address configuration with server 2

Method: Dynamic Priority-Zone Based Configuration Control

- Priority zone setup
 - Sensor nodes near the address server have higher priority to get their addresses configured by the server.
 - Reduce energy consumption, network traffic, and configuration latency.

Address configuration with server1

Address configuration with server 2

Algorithm of Prioritized Configuration Control

Algorithm 1 Prioritized configuration control at each sensor node.

```
1: Input: network topology, Timepool1, TimePool2
                   Time pool 1
 2: \ Timepool2 \leftarrow
 3: if ConfigurationState == 0 then
       if InHighPriorityState == 1 then
4:
           ConfigSeat \leftarrow Random(0, Timepool2)
 5:
       end if
6:
       if InHighPriorityState == 0 then
           ConfigSeat \leftarrow Random(0, Timepool1)
       end if
9:
       if ConfigurationSeat == HitNum then
10:
           Issue a request to the address server
11:
       end if
12:
       if
13:
           Obtaining an address from the server then
14:
           ConfigurationState \leftarrow 1
15:
       end if
16:
17: end if
```

The configuration request at each node may have a different priority in terms of topological distance between the sensor client and the address server.

Server Term Control

Algorithm 2 Serving term control.

```
1: Data Input: Serving term, network topology
2: for i=1 \rightarrow N do
       ConfigurationState[i] \leftarrow 0
 4: end for
 5: ServerID1 \leftarrow RandomlySelectedID
6: ConfigurationFinishState \leftarrow 0
 7: while ConfigurationFinshState == 0 do
       if ServerRotationState == 0 then
8:
           Configuration of the selected nodes
9:
           if ServingCount == Term then
10:
               ServerRotationState \leftarrow 1
11:
               LastID \leftarrow LastConfiguredID
12:
               NextServerID \leftarrow LastID
13:
           end if
14:
           Update ConfigurationFinshState
15:
           Update server rotation state
16:
       end if
17:
18: end while
```

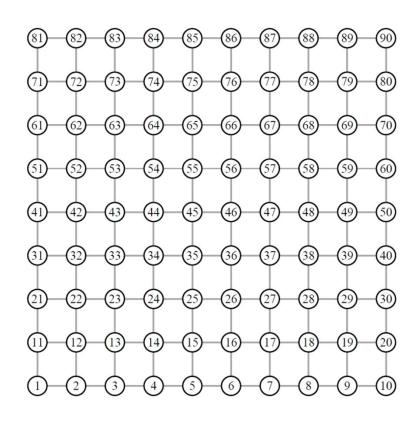
Server roles are rotated among Sensors with the server-term control.

Simulation Evaluation

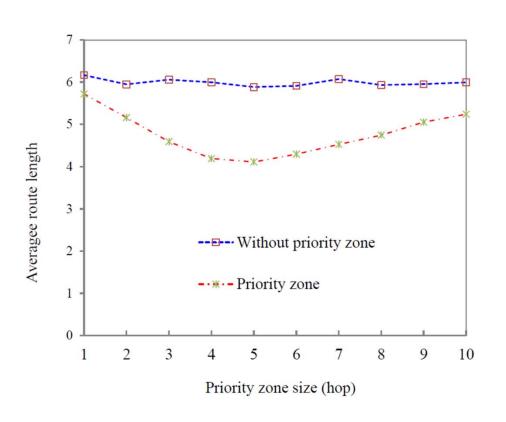
Simulation Setup

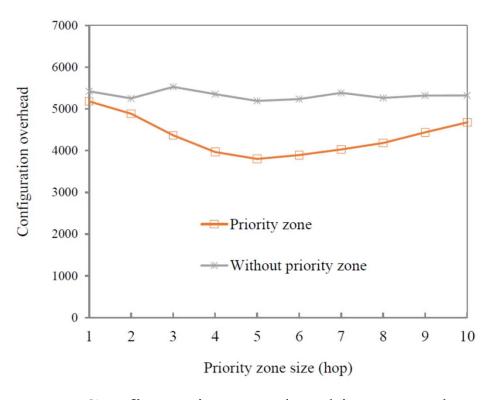
Basic Simulation Setup	
Parameters	Setup
Number of nodes in the network	90, 160
Server term	10
Communication range	10 m
Timepool1	200
Timepool2	20
Rounds of simulation	50

Evaluation scenarios


- Scenario1: 90 nodes

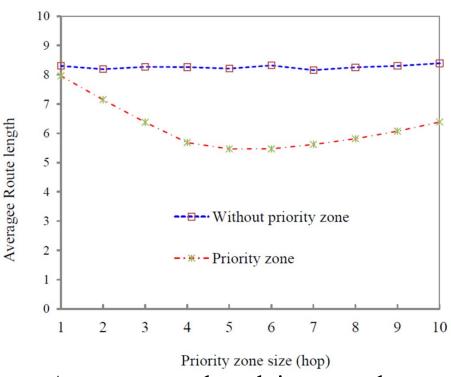
- Scenario2: 160 nodes


• Two methods are examined:


- Dynamic-server based configuration;
- the proposed scheme of prioritized configuration.

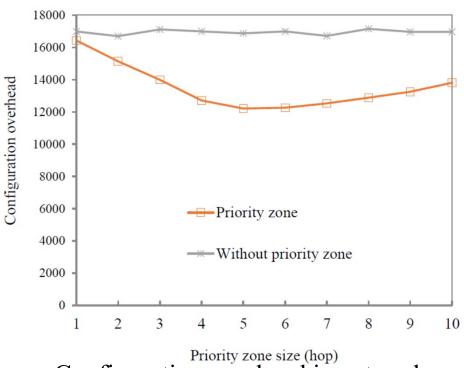
Topology of evaluation scenario of 90 nodes

Numerical Results


Average route length in the network with 90 nodes

• The proposed method enables enables a reduction of up to 30 percent in configuration distance (route length).

Configuration overhead in network with 90 nodes


• The proposed method also enables a reduction of up to 27 percent in configuration overhead.

Numerical Results

Average route length in network with 160 nodes

• The proposed method enables enables a reduction of up to 33 percent in configuration distance (route length).

Configuration overhead in network with 160 nodes

• The proposed method also enables a reduction of up to 28 percent in configuration overhead.

Conclusion

- This paper addressed the configuration distance problem in autoconfiguration of small-size addresses in a self-organized WSN.
- We proposed a prioritized configuration method that
 - employs configuration-priority control in the address request at each sensor client
 - utilizes the spatial-temporal association between address clients and the server.
- The evaluation results show the effectiveness of the proposed method
 - Reducing the configuration distance
 - Reducing the configuration overhead.
 - We find that there is an optimal setup of high-priority zone for the configuration to enable the shortest configuration distance.