

SCREEN2AIR

Air-Gap Exfiltration via High-Order Modulation-Based Screen Saver Covert Channels

Sungshin Women's University
Ye-Rim Jeong | Yeon-Jin Kim | Chea-Yeon Park | II-Gu Lee
220254016@sungshin.ac.kr

Author Introduction

Ye-Rim Jeong

M.S in Convergence Security Engineering, Sungshin Women's University, Seoul, Korea

Key Achievements

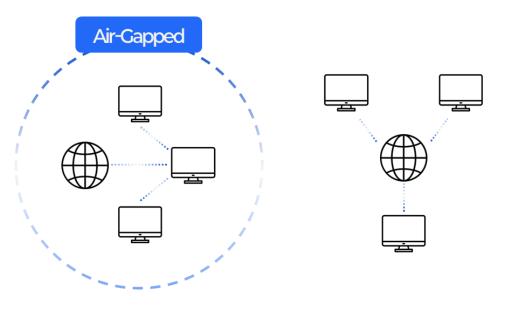
- Best Poster Award in WISA 2025 (World Conference on Information Security Applications)
- Best Paper Award in The 8th Subchannel Information Analysis Contest 2025
- Best Poster Award in Mobisec 2024 (The 8th International Conference on Mobile Internet Security)

Research Interests

- Network Security and Threat Mitigation
- Network Performance Optimization
- IoT Security & Embedded Systems

Contact

- E-Mail: 220254016@sungshin.ac.kr
- https://sites.google.com/view/yerim-jeong


Background: Air-Gapped

Air-Gapped System

- Complete Physical Isolation between internal systems and external networks
 - → <u>Prevents remote intrusion and data leakage</u>
- Used in critical infrastructure and military systems

Rethinking Air-Gap Security: A Call for Systematic Research

- Recent studies actively explore covert data leakage using EM, light, and mechanical vibrations
- Conventional defense cannot monitor such out-of-band communication paths
 - → Necessitates preemptive and systematic research on air-gap attack vectors

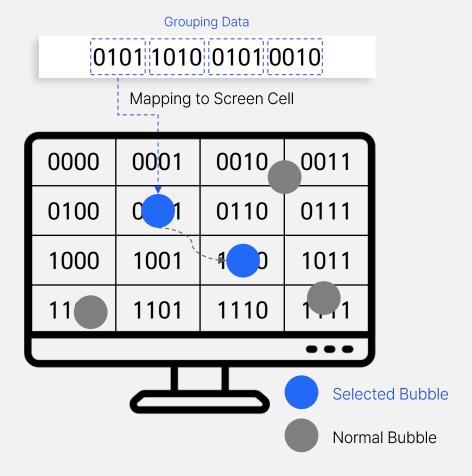
Related Work

Embedding QR codes into images [1]

- 1. Limited effective range depending on camera type
- 2. Potentially noticeable to users due to visual sensitivity

Utilizing the IR functionality of smart lighting systems [2]

1. Depends on infrared-capable lighting, restricting real-world applicability


limited range and visible patterns -> Low practicality

[1] Guri, M.: Optical air-gap exfiltration attack via invisible images. J. Inf. Secur. Appl. 46, 222-230 (2019).

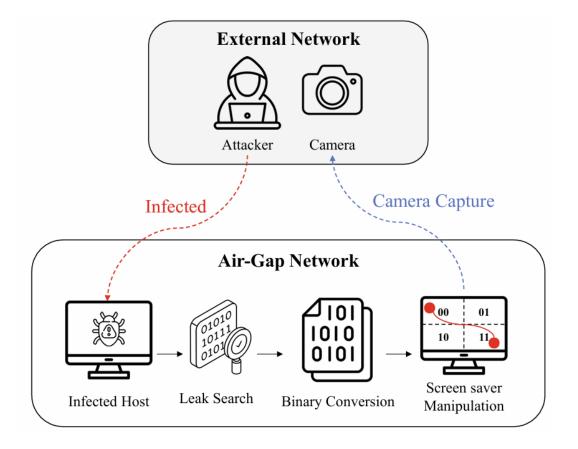
[2] Maiti, A., Jadliwala, M.: Light ears: Information leakage via smart lights. Proc. ACM In-teract. Mob. Wearable Ubiquitous Technol. 3(3), 1-27 (2019)

Proposed Attack Model

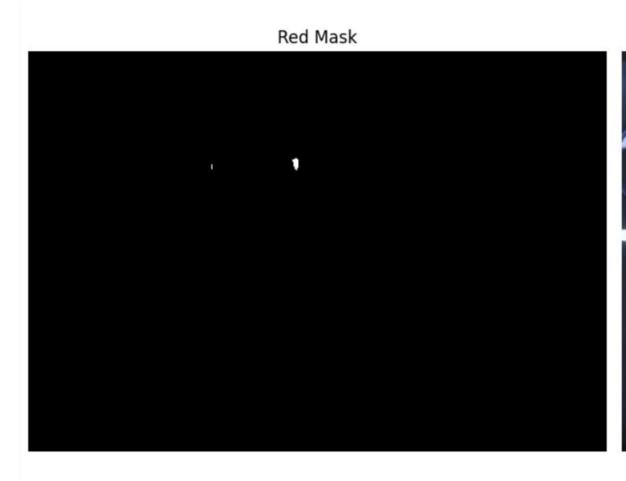
Data Encoding

- Malware collects sensitive data → converts to binary (grouped into n-bit blocks)
- Map each n-bit block to one of 2ⁿ screen cells

Data Transmission

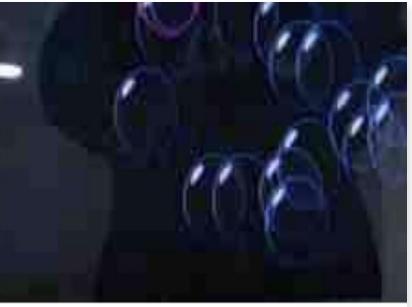

- Selected bubble moves to the target cell and pauses
- Other bubbles move normally; external attacker decodes data from positions.

Proposed Attack Model


Key Features

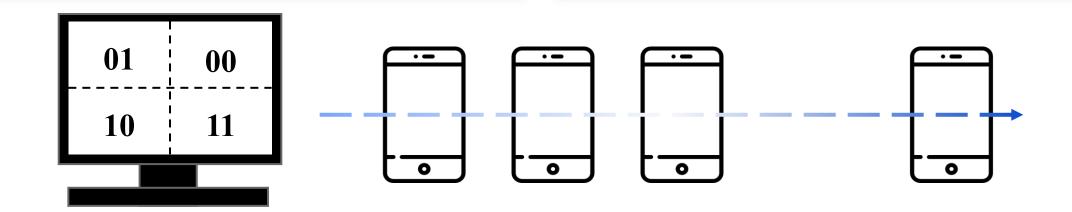
- Hidden attacker-only marker among normal elements
- Operates during user absence → <u>Difficult to detect</u>
- Applicable to various visuals, range up to tens of meters

Demonstration



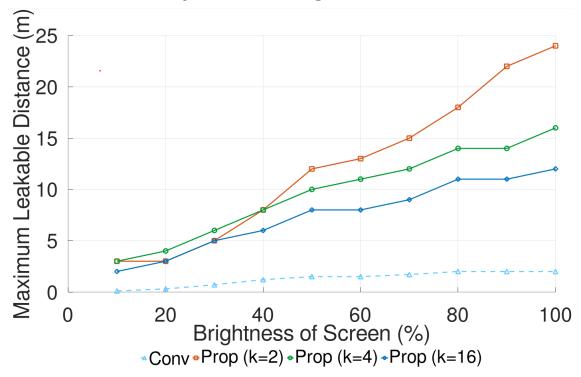
Defense Techniques

- Screen savers still operate during idle time for privacy and display protection.
- They can be abused as covert visual channels in air-gapped systems.
- We counter this by degrading screen-saver image resolution to disrupt decoding.

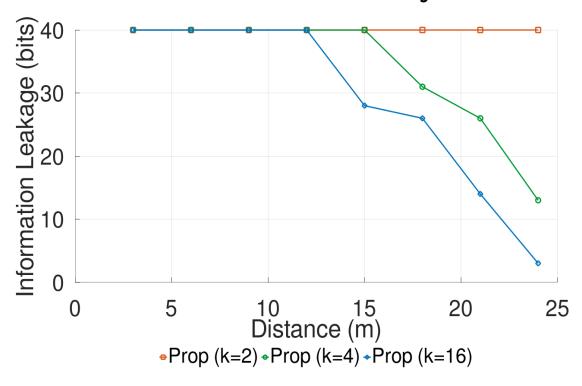

Evaluation

Environment

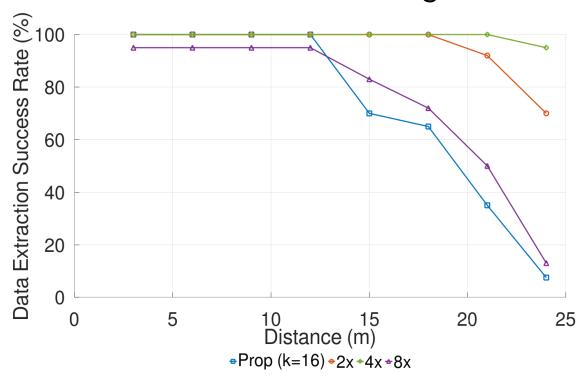
- ✓ Devices: Samsung Galaxy Book Pro, Galaxy S25
- ✓ Conventional: Exfiltrate via QR codes in images
- ✓ Proposed → implemented in Python


Setup

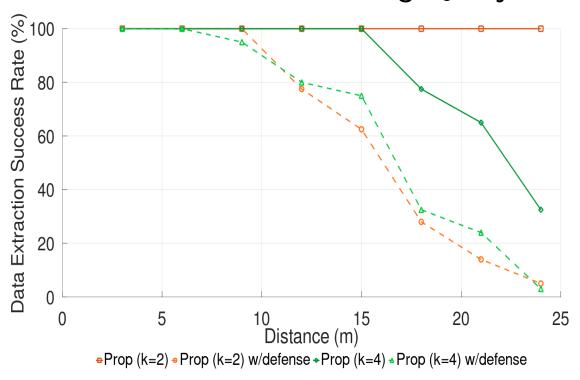
- ✓ Capture laptop screensaver with smartphone
- ✓ Gradually increase distance during capture
- ✓ Decode data using automated script


Leak Distance by Screen Brightness

- The conventional model embeds QR codes into images and the proposed model uses screensavers.
- 'k' represents the number of cells in the screensaver.
- Proposed method achieved the longest range, while QR code methods reached only 2 m.
- More cells = shorter distance, due to weaker visual clarity.
- QR-based recognition is <u>sensitive to lighting</u>, limiting reliability over distance.


Information Extraction Success Rate by Cell Count

- The conventional model embeds QR codes into images and the proposed model uses screensavers.
- 'k' represents the number of cells in the screensaver.
- More cells reduce long-range reliability.
- Fewer cells improve stability but limit data.
- Larger screens balance both.


Data Extraction Success Rate vs Scaling Factor

- The conventional model embeds QR codes into images and the proposed model uses screensavers.
- 'k' represents the number of cells in the screensaver.
- The scaling factor refers to how many times the image quality has been enhanced using the Al-based correction program.
- Proper image scaling helps maintain clear cell boundaries and reduces noise interference during decoding.
- <u>Excessive scaling</u> amplifies visual noise and artifacts, ultimately lowering extraction accuracy.

Data Extraction Success Rate vs Image Quality

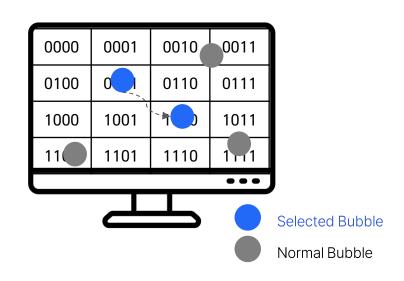
- The conventional model embeds QR codes into images and the proposed model uses screensavers.
- 'k' represents the number of cells in the screensaver.
- The proposed defense reduced decoding success by up to 95% (average ~30%)
- Lower screensaver quality leads to blurred cell boundaries, making extraction unreliable
- Controlling screensaver resolution can act as an effective security layer in air-gapped systems

Conclusion

Summary

up to 7.6x

Contributions


- Novel data-leakage and defense techniques for air-gapped systems using screensavers
- Attack feasibility tests confirmed the impact of cell size and cell count

~13x conventional

• Defense approach proven practical with experimental performance results

Further Work

• Comparative analysis of countermeasures for screensaver-based data exfiltration

up to 95%

Thank You!

Air-Gap Exfiltration via High-Order Modulation-Based Screen Saver Covert Channels

Sungshin Women's University
Ye-Rim Jeong | Yeon-Jin Kim | Chea-Yeon Park | II-Gu Lee
220254016@sungshin.ac.kr