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loT growth - OBSS environments frequent
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« Multiple BSS sharing same/adjacent channels
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» Results in strong interference and degraded QoS
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Background & Motivation

Performance
Degradation in OBSS
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« OBSS environments cause
severe channel interference

» Leadstoreduced throughput,
higher latency, and unstable
link quality

Limitations of
Existing Soluntions

(Do

Prior studies use blocking

links or time-division methods.

These reduce throughput &
SR rates, fail to adapt to real
time traffic, and ignore RX
sensitivity.
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Proposed Approach
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OBSS is treated not as a constraint
but as a resource to manage
Propose ML-based joint control
of TX power and RX sensitivity
Support both centralized (global
optimization) and distributed
(local prediction scalability)



Problem Statement

1 Conventional Methods

2

Focus mainly on TX power control, rarely consider RX sensitivity.

Rely on static probability models, unable to adapt to real-time traffic dynamics.

Result: Fail to mitigate interference effectively in dense |oT networks.

Limitations

Cause significant throughput and SR degradation (up to 40% loss in heavy OBSS).

Do not capture receiver-side effects, leading to unstable SINR.

Poor scalability in high-density deployments.
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“How to mitigate interference while simultaneously
improving throughput and SR in dense loT networks?"
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Proposed Scheme

Proposed Solution
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Proposed Scheme SensorComm 2025

® Network simulation

STA

« Each AP communicates with its associated STAs within its BSS.

» Overlapping BSS areas cause co-channel interference among APs and STAs.
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@ data collection
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» Each AP collects local network information such as TX/RX parameters,

number of neighboring nodes, distance, SINR, PLR, and success flag for training.



Proposed Scheme

® Machine learning

Training/Validation Input

Source Source Destination Destination
Tx power Rx sensitivity Tx power Rx sensitivity
Number of . Success
Neighbor node Distance SINR PLR flag

network environment information

Machine
learning

q

The ML model learns the optimal TX power and RX sensitivity

that minimize interference and maximize throughput.
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Training/Validation Output

Source Source
Tx power Rx sensitivity
Destination Destination
Tx power Rx sensitivity
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Proposed Scheme

@ Machine learning based TX/RX parametercontrol
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Each AP dynamically adjusts TX power and RX sensitivity based on the learned mode],

reducing interference and improving throughput.
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Simulation Model SensorComm 2025

Network Topology Model Parameters

gL V/

=
/l\ /*\ Channel model
( { / Log-distance path loss with shadow fading (o = 4 dB)
y 7 \\ /\/ \\, 7 / - N . d I
Y\, ‘ KA oise mode
,/&\ TN Thermal noise (N = -94 dBm)
A4 \
i \/ \ \ A Ap Performance metric
\\A_/ e /* \\ ¢ Lt <TA Downlink/uplink SINR (includes AP & STA interference)
i \ /
0 X 100(m )

« 100m x 100m area, single 20 MHz channel (2.4 GHz)
* 9 APsin 3x3grid (33.33 m spacing), 4 STAs per AP
» Co-channel interference due to overlapping coverage
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Experimental Environment SensorComm 2025

Experimental Setup Evaluated Methods
« Traffic Loads: 3, 6,12, 24, 48 Mbps
Control techniques Description
* Runs: Each test 10 seconds, repeated 1000 times
. ) Conventional method controlling Tx power
Metrics Evaluated: c central in a centralized technique
. onv
- Effective Throughput (Mbps) dist Conventional method controlling Tx power
- Measured SINR (dB) in a distributed technique
- Control overhead (s) Proposed method controlling Tx power
central —— . .
b and Rx sensitivity in a centralized technique
rop
dist Proposed method controlling Tx power
and Rx sensitivity in a distributed technique
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Effective Throughput (Mbps)

Evaluation Result - Effective Throughput
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3 6 12 24
Traffic Load (Mbps)

48

T, = Rycs(SINR;) x (1 — PLR;)
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« Effective Throughput ™ 47.1%
* Distributed > Centralized
46.4% 1 under low load

« Stable even under heavy traffic

i: i-th simulation round

T;: Effective throughput measured at round i

Rycs (SINR;): MCS selection function that maps the measured SINR_ito
the corresponding PHY data rate IEEE 802.11ac, 20 MHz, MCS 0-9);
selects the highest MCS level satisfying the SINR threshold.

SINR;: Measured SINR atround i

PLR;: Packet loss ratio at round i



Evaluation Result - Measured SINR SensorComm 2025

-@— conv(central)

g 12 =l conv(dist)

g —A— prop(central)

2 prop(dist)

E 10 A

= « Measured SINR 1 29.6%

8 4] « Distributed: consistent improvement
s 2 « Ensures higher link quality
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3 6 12 24 48
Traffic Load (Mbps)

Pry(ij) = Pex(jy — PL(i, j): The received signal power
Prx(i'j) Prx(j,i) Pyx(j): The TX power of AP,
DL(i'j) = ’ SINRUL(i,j) = PL(i, j): The path loss between AP;and ST A;
N; + I; Ni + I; .
l l ] ] N;: The noise power at STA;
I;: The interference from the other APs and active STAs

SINR
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Evaluation Result - Control Overhead
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conv(central) conv(dist) prop(central) prop(dist)
Control Techniques

Control Overhead
= ML prediction + filel/O
+ SINR calculation of the network
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Distributed control overhead 1t
due to prediction overhead

Still scalable in real deployments



Conclusion and Future work

Conclusion

« ML-based joint TX/RX control mitigates OBSS interference

« The distributed approach achieves 47.1% higher throughput
and 29.6% better SINR than conventional methods.

« |t maintains stable link quality under heavy traffic,

demonstrating strong potential for real-world deployment.

Future work

» Use ns-3 for realistic distributed simulation
* Apply reinforcement learning for adaptive control
» Validate in real WLAN deployments
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ML-based joint control
of TX power and RX sensitivity
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Jin-Min Lee
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