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IoT growth → OBSS environments frequent

Multiple BSS sharing same/adjacent channels

Results in strong interference and degraded QoS
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OBSS environments cause 
severe channel interference
Leads to reduced throughput, 
higher latency, and unstable 
link quality

Performance 
Degradation in OBSS

Prior studies use blocking 
links or time-division methods.
These reduce throughput & 
SR rates, fail to adapt to real 
time traffic, and ignore RX 
sensitivity.

Limitations of 
Existing Soluntions

OBSS is treated not as a constraint 
but as a resource to manage
Propose ML-based joint control
of TX power and RX sensitivity
Support both centralized (global 
optimization) and distributed 
(local prediction scalability)

Proposed Approach

Background & Motivation01 SensorComm 2025



1 Conventional Methods

2 Limitations

Cause significant throughput and SR degradation (up to 40% loss in heavy OBSS).

Do not capture receiver-side effects, leading to unstable SINR.

Poor scalability in high-density deployments.
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• Focus mainly on TX power control, rarely consider RX sensitivity.

• Rely on static probability models, unable to adapt to real-time traffic dynamics.

• Result: Fail to mitigate interference effectively in dense IoT networks.

Problem Statement02 SensorComm 2025



“How to mitigate interference while simultaneously 
improving throughput and SR in dense IoT networks?”
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• OBSS interference occurs from 
shared same/adjacent channels

• Throughput degradation

• ML-based distributed control
• TX Power (on sender side)
• RX Sensitivity (on receiver side)

• Interference ↓, Throughput ↑

OBSS Interference AP

Tx Power ↑

STA

Rx Sensitivity ↓

Tx Power ↑

Problem Proposed Solution

Proposed Scheme03 SensorComm 2025
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AP

STA

Proposed Scheme03 SensorComm 2025

① Network simulation

• Each AP communicates with its associated STAs within its BSS.

• Overlapping BSS areas cause co-channel interference among APs and STAs.
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AP

STA

Proposed Scheme03 SensorComm 2025

② data collection

• Each AP collects local network information such as TX/RX parameters,

number of neighboring nodes, distance, SINR, PLR, and success flag for training.

data

data



• The ML model learns the optimal TX power and RX sensitivity

that minimize interference and maximize throughput.
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Proposed Scheme03

③ Machine learning

Machine 
learning

Source 
Tx power

Source 
Rx sensitivity

Destination 
Tx power

Destination 
Rx sensitivity

Training/Validation Input

Number of 
Neighbor node

Distance SINR PLR
Success

flag

network environment information

Source 
Tx power

Source 
Rx sensitivity

Destination 
Tx power

Destination 
Rx sensitivity

Training/Validation Output

SensorComm 2025
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Proposed Scheme03 SensorComm 2025

④ Machine learning based TX/RX parameter control

Source 
Tx power

Source 
Rx sensitivity

Destination 
Tx power

Destination 
Rx sensitivity

• Each AP dynamically adjusts TX power and RX sensitivity based on the learned model, 

reducing interference and improving throughput.

AP

STA
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AP

STA

Channel model
Log-distance path loss with shadow fading (σ = 4 dB)

Noise model
Thermal noise (N = –94 dBm)

Performance metric
Downlink/uplink SINR (includes AP & STA interference)

• 100m × 100m area, single 20 MHz channel (2.4 GHz)
• 9 APs in 3×3 grid (33.33 m spacing), 4 STAs per AP
• Co-channel interference due to overlapping coverage

Network Topology

Simulation Model04 SensorComm 2025

Model Parameters
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• Traffic Loads: 3, 6, 12, 24, 48 Mbps

• Runs: Each test 10 seconds, repeated 1000 times

• Metrics Evaluated:

- Effective Throughput (Mbps)

- Measured SINR (dB)

- Control overhead (s)

Control techniques Description

Conv

central
Conventional method controlling Tx power

in a centralized technique

dist
Conventional method controlling Tx power

in a distributed technique

Prop

central
Proposed method controlling Tx power

and Rx sensitivity in a centralized technique

dist
Proposed method controlling Tx power

and Rx sensitivity in a distributed technique

Evaluated MethodsExperimental Setup

Experimental Environment05 SensorComm 2025
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𝑇𝑖  =  𝑅𝑀𝐶𝑆 𝑆𝐼𝑁𝑅𝑖 × 1 − 𝑃𝐿𝑅𝑖  

𝑖: i-th simulation round
𝑇𝑖: Effective throughput measured at round 𝑖
𝑅𝑀𝐶𝑆(𝑆𝐼𝑁𝑅𝑖): MCS selection function that maps the measured 𝑆𝐼𝑁𝑅_𝑖to 

the corresponding PHY data rate (IEEE 802.11ac, 20 MHz, MCS 0–9); 

selects the highest MCS level satisfying the SINR threshold.

𝑆𝐼𝑁𝑅𝑖: Measured SINR at round 𝑖
𝑃𝐿𝑅𝑖: Packet loss ratio at round i

• Effective Throughput ↑ 47.1%

• Distributed > Centralized 

46.4% ↑ under low load

• Stable even under heavy traffic
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Evaluation Result – Effective Throughput06 SensorComm 2025
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𝑆𝐼𝑁𝑅𝐷𝐿 𝑖 𝑗 =
𝑃𝑟𝑥 𝑖 𝑗

𝑁𝑖 + 𝐼𝑖
,  𝑆𝐼𝑁𝑅𝑈𝐿(𝑖,𝑗) =

𝑃𝑟𝑥(𝑗,𝑖)

𝑁𝑗 + 𝐼𝑗

𝑃𝑟𝑥 𝑖,𝑗 = 𝑃𝑡𝑥 𝑗 − 𝑃𝐿 𝑖, 𝑗 : Tℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑃𝑡𝑥 𝑗 : Tℎ𝑒 𝑇𝑋 𝑝𝑜𝑤𝑒𝑟 𝑜f 𝐴𝑃𝑗

𝑃𝐿 𝑖, 𝑗 : Tℎ𝑒 𝑝𝑎𝑡ℎ 𝑙𝑜𝑠𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑃𝑗𝑎𝑛𝑑 𝑆𝑇𝐴𝑖

𝑁𝑖: Tℎ𝑒 𝑛𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟 𝑎𝑡 𝑆𝑇𝐴𝑖

𝐼𝑖: Tℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝐴𝑃𝑠 𝑎𝑛𝑑 𝑎𝑐𝑡𝑖𝑣𝑒 𝑆𝑇𝐴𝑠

• Measured SINR ↑ 29.6% 

• Distributed: consistent improvement

• Ensures higher link quality
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Evaluation Result - Measured SINR06 SensorComm 2025
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𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
= 𝑀𝐿 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑓𝑖𝑙𝑒 𝐼/𝑂
+ 𝑆𝐼𝑁𝑅 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

• Distributed control overhead ↑ 

due to prediction overhead

• Still scalable in real deployments

Evaluation Result – Control Overhead06 SensorComm 2025



16

Conclusion

Future work

• ML-based joint TX/RX control mitigates OBSS interference

• The distributed approach achieves 47.1% higher throughput 

and 29.6% better SINR than conventional methods.

• It maintains stable link quality under heavy traffic, 

demonstrating strong potential for real-world deployment.

• Use ns-3 for realistic distributed simulation

• Apply reinforcement learning for adaptive control

• Validate in real WLAN deployments

Conclusion and Future work06 SensorComm 2025

Tx Power ↑
Rx Sensitivity ↓

Tx Power ↑

ML-based joint control 
of TX power and RX sensitivity
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Thank you!

Jin-Min Lee
csewa56579@gmail.com

Sungshin Women’s University
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