Evaluating User Perceptions of Privacy Protection in Smart Healthcare Services

Huan Gua, Elias Seid, Yuhong Li, Fredrik Blix
Department of Computer and Systems Sciences
Stockholm University, Sweden

g e n d

Introduction

background, research problem,
research question

Method

research strategy, data collectionmethod, data analysis method, ethical considerations

Results
results table, code system


04 Discussion

discussion of the results, recommendations, ethical and sociteal implications, limitations and future research directions

PART 01

Introduction

background, research problem,
research question, extended background



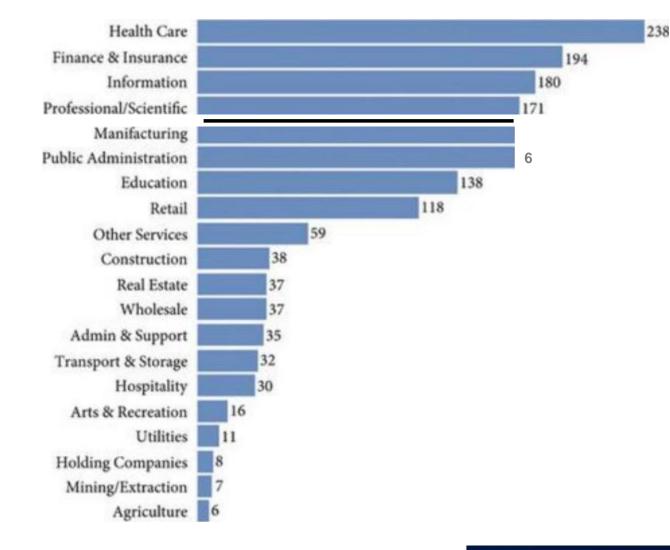
D. Eckhoff and L Wagner, "Privacy in the Smart City-Applications,"
Techno logies, Challenges, and Solutions,"
IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 489-516, 2018, doi: 10.1109/COMST.2017.2748998.

Fig. 1.

smart city applications and enabling technolo gies

The Smart City

Smart ealthcare


D. El Majdoub1, H. El Bakkal'i. S. Sadki. Z. Magour, and A. Leg hmid, "The System at ic Lit erature Review of Privacy Preserving Solutions in Smart Healthcare Environ m en t." Security and Communication Networks, vol. 2022, no. 1, 5 6 4 2 0 2 6 , 2 0 2 2 doi: hts://doi.org/10.1155/2022/5642026.

Art. 9 GDPR

Processing of s ec1a categories of pers on al data

Pocess,ng of :>ersonal d t revealing t ,all or e hn,c or1g1n,poht,cal o p11110s, rel1g1ous or ph1losoph1calbeliefs, or trade urnon m mbersh1p, and lhe processing of genetic data. biometric data IO the purpose of uniquely identifying a natu al person, data coocem1n

1 "r dala concerning a natural person's sex life or sexual onentat on shall be proh1b1ted

affect a per on s health and life

he 2021 Mid-Year Data Breach Quick View Report

Research problem

understand users' perceptions of specific privacy protection measures in smart healthcare services

What is the research gap?

insufficient
studies regarding
understanding of
privacy
protection
measures

Why the gap should be addressed?

perceptions of privacy protection measures—
directly impact their intention to accept smart healthcare services and their behavior while using smart healthcare services.

first step in this process is ensuring they perceive and recognize the privacy measures in place.

factors involved in healthcare data security.

Research question and aim

Question

How do users perceive privacy protection measures in smart healthcare services?

Aim explore users' concerns and expectations when perceiving privacy protection measures in smart healthcare services.

Ex tended background

Smart healthcare services

location-based tracking
high-speed communication
network-enabled services
IoT applications
mobile health solutions
AI-driven services
robotic systems
extended reality technologies
and telehealth

Privacy protection mesures Technical & Organizational

rivacy Priserving

Techniques

Blockchain Based

Techniques

Anonymization

Techniques

Transaction Data

Techniques

Smart Contracts

Techniques

Hybrid-Based

techniques

Deep Learning

Techniques

Multi-party

Computation

Encryption Techniques

Differential Privacy Techniques

Privacy Preserving

Basic Techniques

Techniques

ccess control base Techniques

Technology Acceptance Model

perceived usefulness perceived ease of use

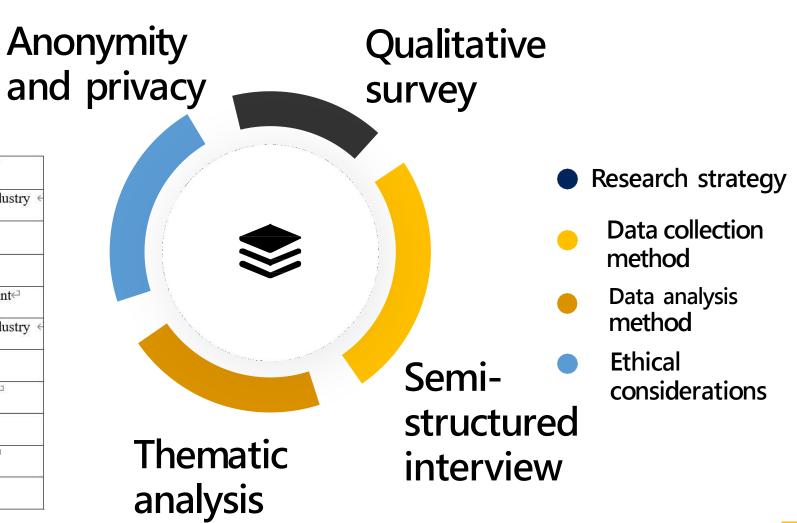
Privacy calculus theory

Unified Theory of Acceptance and Use of Technology

Performance Expectancy
Effort Expectancy
Social Influence
Facilitating Conditions

perceived benefits perceived privacy risks

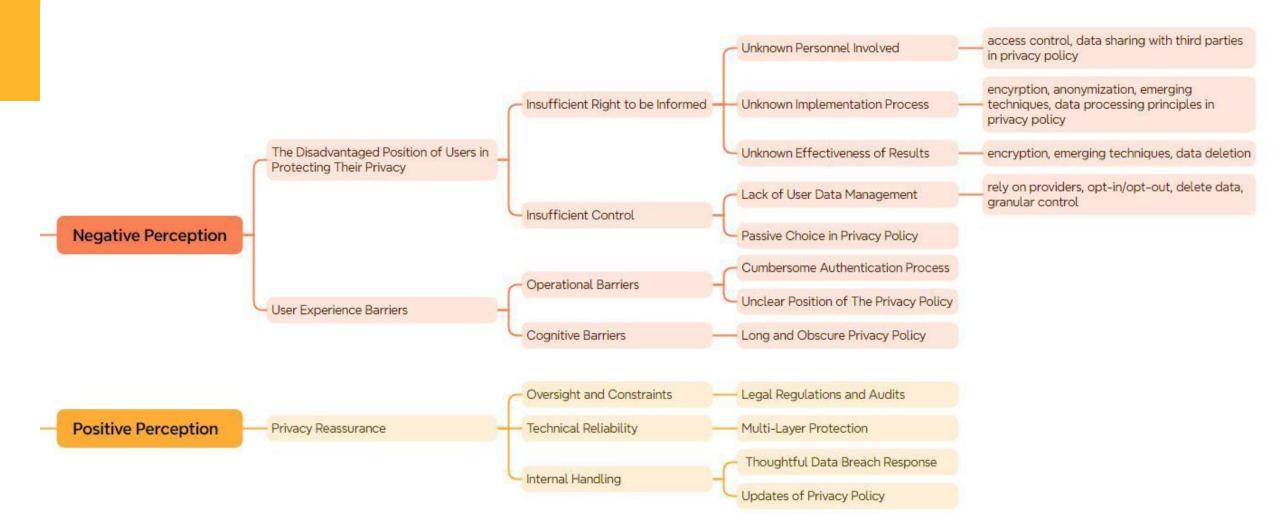
PART 02


Method

research strategy, data collection method, data analysis method, ethical considerations

Interview Participants

Participant←	Age Group←	Gender←	Nationality [←]	Industry/Major<□
1€	Middle-aged	Female←	Sweden←	Manufacturing Industry +
2←	Middle-aged	Male←	India←	Food & Beverage Industry⇔
3↩	Youth←	Male←	United States←	Media Industry ←
4↩	Youth←	Female←	Germany€	Engineering Student←
5↩	Older adults←	Male←	United States	Manufacturing Industry
6←	Youth←	Female←	Sweden	Finance Student←
7₽	Middle-aged [∠]	Female←	Sweden←	Gaming Industry ←
8↩	Older adults←	Male←	China←	Retiree←□
9₽	Youth←	Male←	Finland←	Medical Industry ←
10↩	Older adults←	Female←	China←	Retiree←□


PART 03

Results

results table, code system

Themes Subthemes Codes

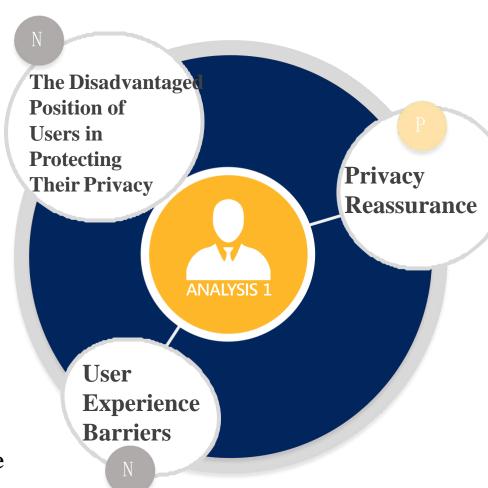
Code Systems

odes	Sources	References
The Disadvantaged Position of Users in Protecting Their Privacy	10	201
☐ Insufficient Control	10	78
lack of user data management	10	49
passive choice in privacy policy	10	29
☐ ☐ Insufficient Right to be Informed	10	100
unknown personnel involved	10	44
unknown implementation process	10	84
unknown effectiveness of results	10	73
Privacy Reassurance	10	147
Technical Reliability	7	26
multi-layer protection	7	21
Oversight and Constraints	10	39
legal regulations and audits	10	28
Internal Handling	10	31
thoughtful data breach response	10	21
updates of privacy policy	8	23
User Experience Barriers	10	152
Cognitive Barriers	10	54
ong and obscure privacy policy	10	27
Operational Barriers	10	35
cumbersome authentication process	10	25
unclear position of the privacy policy	2	2

PART 04

Discussion

discussion of the results,
recommendations,
ethical and sociteal implications,
limitations and future research directions


Discussion of the results

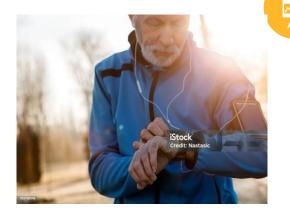
insufficient right to be informed & insufficient control → perceived privacy risks in privacy calculus theory

Cognitive barriers → Long and Obscure Privacy
Policy→"facilitating condition"
(FC) and "effort expectancy"
(EE) factors in the UTAUT model.

Operational barriers \rightarrow

Cumbersome Authentication
Process & Unclear Position of The
Privacy Policy → low level of
perceived ease of use in the TAM
model

- positive perceptions
- negative perceptions


Technical Reliability → multilayer protection → "performance expectancy" (PE) in the UTAUT model

Oversight and Constraints → Legal and audit constraints → "facilitating conditions" (FC) in the UTAUT model

Internal Handling → updates its privacy policy & thoughtful data breach response → "facilitating conditions" (FC) in the UTAUT model

Perceptions across multiple smart healthcare services

wearable devices

mobile health management applications

telehealth platforms

medical history →
health information
sensitivity → perceived
privacy risk

medicine delivery system

offline delivery scenario

Recommendations

Improve the perceptibility of privacy protection measures.

based on insufficient right to be informed

Enhance user participation in data processing activities.

based on insufficient control

Optimize the user experience concerning the barriers associated with the use of privacy protection measures.

base on user experience barriers

Strengthen and educate users' awareness of privacy protection measures.

Ethical and Societal Implications

The Disadvantaged Position of Users in Protecting Their Privacy

Ethical: Providers continue to reinforce their control over user data rather than genuinely empowering users with privacy autonomy.

Societal: not only hinder the wider adoption of the services but also negatively affect the relationship between users and other stakeholders within smart healthcare.

Contributions

Theoretical

helps address the research problem by complementing the user perspective on privacy protection measures in smart healthcare

Practical

identifies the limitations of current privacy protection measures in smart healthcare services and offers concrete recommendations to alleviate users' concerns

Limitations and Future Research Directions

qualitative analysis and small sample size

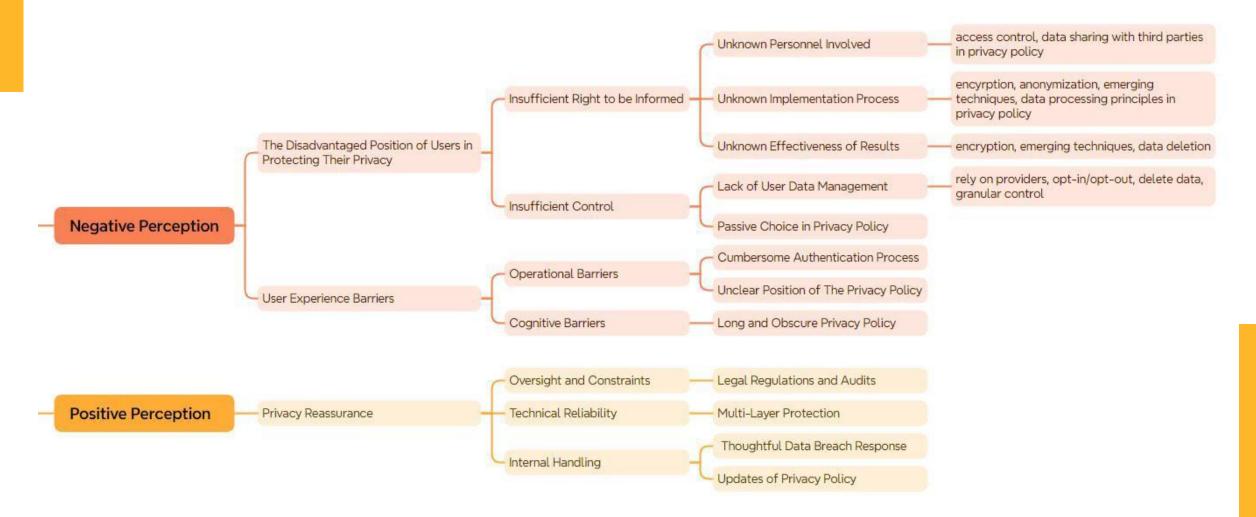
combines qualitative interviews with a larger-sample quantitative questionnaire, a comparative analysis between older people in Europe and those in Asia can better explore the socio-cultural contexts that may shape participants' privacy perceptions.

lack of comparative analysis of privacy protection measures

users' potential varying perceptions of different types of encryptions used in telehealth platforms and mobile health management applications can be investigated.

theoretical depth

refine the perceived privacy risks within the privacy calculus theory, proposing the construct related to the perceived opacity of privacy protection measures to validate its impact on trust and acceptance of multiple smart healthcare services



recommendation specificity

a case study exploring how to embed a usercentric end-to-end encryption design into a particular telehealth platform.

Conclusions

Themes Subthemes Codes

References

- F. Tazi, A. Nandakumar, J. Dykstra, P. Rajivan, and S. Das, "SoK: Analyzing Privacy and Security of Healthcare Data from the User Perspective," *ACM Trans. Comput. Healthcare*, vol. 5, no. 2, p. Article 11, 2024, doi: 10.1145/3650116.
- E. M. Schomakers, C. Lidynia, and M. Ziefle, "Listen to My Heart? How Privacy Concerns Shape Users' Acceptance of e-Health Technologies," in *2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)*, 21-23 Oct. 2019 2019, pp. 306-311, doi: 10.1109/WiMOB.2019.8923448.
- M. Duckert and L. Barkhuus, "Protecting Personal Health Data through Privacy Awareness: A study of perceived data privacy among people with chronic or long-term illness," *Proc. ACM Hum.-Comput. Interact.*, vol. 6, no. GROUP, p. Article 11, 2022, doi: 10.1145/3492830.
- M. N. Alraja, H. Barhamgi, A. Rattrout, and M. Barhamgi, "An integrated framework for privacy protection in IoT Applied to smart healthcare," *Computers & Electrical Engineering*, vol. 91, p. 107060, 2021/05/01/2021, doi: https://doi.org/10.1016/j.compeleceng.2021.107060.
- H. Kwon *et al.*, "Review of smart hospital services in real healthcare environments," *Healthcare informatics research*, vol. 28, no. 1, pp. 3-15, 2022.
- B. R. Louassef and N. Chikouche, "Privacy preservation in healthcare systems," in 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP), 20-21 Nov. 2021 2021, pp. 1-6, doi: 10.1109/AI-CSP52968.2021.9671083.

References

V. Garcia-Font, "SocialBlock: An architecture for decentralized user-centric data management applications for communications in smart cities," *Journal of Parallel and Distributed Computing*, vol. 145, pp. 13-23, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.jpdc.2020.06.004.

D. Eckhoff and I. Wagner, "Privacy in the Smart City—Applications, Technologies, Challenges, and Solutions," IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 489-516, 2018, doi: 10.1109/COMST.2017.2748998.

V. Zimmermann, "Smart cities as a testbed for experimenting with humans? - Applying psychological ethical guidelines to smart city interventions," *Ethics and Information Technology*, vol. 25, no. 4, p. 54, 2023/10/24 2023, doi: 10.1007/s10676-023-09729-3.

- J. Sanghavi, "Review of Smart Healthcare Systems and Applications for Smart Cities," in *ICCCE 2019*, Singapore, A. Kumar and S. Mozar, Eds., 2020// 2020: Springer Singapore, pp. 325-331.
- E. Union, "General Data Protection Regulation (GDPR)," ed, 2016.

THANK YOU