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1.  Aims and Contributions 

We aimed at:

 Building a compact, robust and reliable automated penetration testing (pentesting) system 
based on Inverse Soft-Q Learning (ISQL)

Contributions of our study:

 We propose an architecture for realizing automated pentesting based on ISQL; 

 We implement a method for encoding pentesting tasks and actions, demonstrating that ISQL 
can be effectively used in automating pentesting; 

 We conduct thorough experiments in a simulated network to evaluate the proposed PT-ISQL 
approach, and provide an in-depth analysis to the results. 



2. SOTA—Focus on RL & IL for Pentesting

 Pentesting with Reinforcement Learning (RL)
 Core idea: Agent learns via environment interaction (Agent → Action → State Change → Reward).
 Examples:

• Deep Exploit (A3C algorithm): Automates server exploitation but struggles with large discrete action spaces.
• DQN-based attack path optimization: Relies on known network topology (unrealistic for real-world use).

 Key limitations: RL’s trial-and-error leads to instability; large state/action spaces slow convergence.

 Pentesting with Imitation Learning (IL): a specialized form of RL
 Core idea: Agent learns from expert demonstrations (infers reward/policy).
 Examples:

• GAIL-PT: Combines GAIL + Deep Exploit but needs hyperparameter tuning and 5000 expert demos.
• DQfD-AIPT: Reduces overfitting but requires massive expert data.

 Key limitation: large amount of expert data are needed to build the expert database

 Our Advantage: PT-ISQL uses ISQL to avoid complex adversarial training while minimizes the needed expert data.



3. PT-ISQL —System Architecture

Three Core Components

• ISQL Component (Core)

• Input: Expert demonstrations (state-action pairs: e.g., 
scan, exploit, privilege escalation).

• Output: Learned soft Q-function (implicitly captures 
reward + policy).

• RL Agent

• Uses ISQL-learned policy to act autonomously (e.g., 
discover attack paths, avoid honeypots).

• Adapts to dynamic defenses (e.g., patched systems, IDS).

• Pentesting Environment

• Returns state info (host config, vulnerabilities) after 
agent/expert actions.

• In our paper, we used a simulated network (e.g., NASim
“small-honeypot” topology: 4 subnets, 8 hosts, 1 
honeypot).



Step 1: Process Expert Demonstrations

 Extract state-action pairs (s, a) from expert 
trajectories (Dexpert).

 Filter demos via reward threshold (e.g., high 
threshold = 100 for quality control).

3. PT-ISQL —ISQL Workflow (1)



3. PT-ISQL —ISQL Workflow (2)

Step 2: Iterative ISQL Training

 Goal: Learn a soft Q-function that aligns with expert behavior.

 Key Equations:

Qtarget (s,a)= r (s,a)+γ Ea′ [Q(s′,a′)]−αlogπ(a′∣s′)

r = reward, γ = discount factor, α = entropy temperature, π = policy
Policy:      π(a|s) = softmax (Q(s,a)/ α

 Training Loop:

• Initialize Q-function (𝑄ѳ). 
• Sample batch from Dexpert.
• Compute loss (MSE between predicted/ target Q-values).
• Update 𝑄ѳvia gradient descent.

Step 3: Agent Execution

 Agent uses learned π to perform pentesting tasks (e.g., reach sensitive hosts, 
avoid honeypots).



4. Evaluation —Experiment Setup 

Network, tools and evaluation metrics 

Environment & Tools

Platform: Kali Linux VM + MiniConda (Python 3.x).

Simulator: NASim v0.12.0 (“small-honeypot” network).

Network Topology:

• 4 subnets, 8 hosts (Linux/Windows), 3 services (HTTP, SSH, FTP).
• Sensitive hosts: (2,0) and (4,0) (reward = 100).
• Honeypot: (3,2) (penalty = -100).

Evaluation Metrics

Honeypot Invasion Probability: Likelihood of agent interacting with honeypot (lower = better).

Average Cumulative Reward: Reflects efficiency/stealth (higher = better).

Goal-Reached Probability: Likelihood of reaching sensitive hosts (higher = better).



4. Evaluation —Key Result (1)

 Influence of Demo Threshold

 Low Threshold (21): Avg. reward = 98.80 ± 41.14 (high variance).

 High Threshold (100): Avg. reward = 134.86 ± 21.23 (higher reward, lower 
variance).

 Conclusion: Higher-quality demos (high threshold) improve stability.

 Minimum Demo Quantity

 Stability Threshold: ≥30 demos (high threshold) → stable reward (116 ± 15).

 Comparison to GAIL-PT: PT-ISQL needs 30 demos vs. GAIL-PT’s 5000.

 Conclusion: PT-ISQL is highly data-efficient.

Expert Demo Quality & Quantity



4. Evaluation — Key Result (2)

 Metric comparisons

 Convergence Speed

 PT-ISQL converges by 20,000 steps; 
RL still learns at 100,000 steps.

Metric PT-ISQL (ISQL) Simple Q-Learning (RL)

Honeypot Invasion Prob. ~0.05 (early convergence) ~0.25 (unstable)

Avg. Reward 132 ± 14 (stable) Fluctuates (some runs fail)

Goal-Reached Prob. ~0.9 (by 20,000 steps) ~0.6 (after 100,000 steps)

Honeypot probability, Average reward, Goal probability vs. Training steps

ISQL vs. Simple Q-Learning



5. Conclusion and Future Work

Conclusion:

 PT-ISQL uses ISQL to automate pentesting with minimal expert data.

 Outperforms RL in convergence speed, stability, and task performance.

 Reduces honeypot interactions and improves goal achievement.

Future work:

 Validate PT-ISQL in larger simulated networks and real-world environments.

 Integrate PT-ISQL with tools like Deep Exploit for deployable use.

 Conduct qualitative comparisons with LLM-based agents.
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