Towards Automated Penetration Testing
using Inverse Soft-QQ Learning

Dongfang Song, Yuhong Li, Ala Berzinji, Elias Seid /\
Department of Computer and Systems Sciences, & (kﬁ“/\o
Stockholm University, Sweden Suwwlipa s StOCkhO.lm TARIA
i
7

s T 3
Contact email: yh2025@dsv.su.se Y, !S@“O UnlverSIty ‘ S

1. Aims and Contributions

Building a compact, robust and reliable automated penetration testing (pentesting) system
based on Inverse Soft-Q Learning (ISQL)

We propose an architecture for realizing automated pentesting based on ISQL;

We implement a method for encoding pentesting tasks and actions, demonstrating that ISQL
can be effectively used in automating pentesting;

We conduct thorough experiments in a simulated network to evaluate the proposed PT-ISQL
approach, and provide an in-depth analysis to the results.

2. SOTA—Focus on RL & IL for Pentesting

O Pentesting with Reinforcement Learning (RL)
* Core idea: Agent learns via environment interaction (Agent — Action — State Change — Reward).
= Examples:

* Deep Exploit (A3C algorithm): Automates server exploitation but struggles with large discrete action spaces.
* DQN-based attack path optimization: Relies on known network topology (unrealistic for real-world use).

Key limitations: RL’s trial-and-error leads to instability; large state/action spaces slow convergence.

O Pentesting with Imitation Learning (IL): a specialized form of RL

= Core idea: Agent learns from expert demonstrations (infers reward/policy).
= Examples:

* GAIL-PT: Combines GAIL + Deep Exploit but needs hyperparameter tuning and 5000 expert demos.
* DQfD-AIPT: Reduces overfitting but requires massive expert data.

» Key limitation: large amount of expert data are needed to build the expert database

O Our Advantage: PT-ISQL uses ISQL to avoid complex adversarial training while minimizes the needed expert data.

I 3. PT-ISQL —System Architecture

e E
< > Inverse Soft-Q Learning (ISQL)
Inverse
: e Recover
Hilter PT Expert Demos Q-Learning
(o] | Knowli:edge Base Q-function > Policy, Reward B
State&Action
_ PT Expert)
A
| 4 State & Action
| : (Online)
v .
4 N\ "
Pentesting
: : (z)
Environment : sllb(;et " State g
r | >

_ Subnet 4

(1 0)

: Subnet 1

Action

Three Core Components

¢ ISQL Component (Core)

* Input: Expert demonstrations (state-action pairs: e.g.,
scan, exploit, privilege escalation).

* Output: Learned soft Q-function (implicitly captures
reward + policy).

* RLAgent

» Uses ISQL-learned policy to act autonomously (e.g.,
discover attack paths, avoid honeypots).

* Adapts to dynamic defenses (e.g., patched systems, IDS).

* Pentesting Environment

* Returns state info (host config, vulnerabilities) after
agent/expert actions.

* In our paper, we used a simulated network (e.g., NASim
“small-honeypot” topology: 4 subnets, 8 hosts, 1
honeypot).

3. PT-ISQL —ISQL Workflow (1)

Step 1: Process Expert Demonstrations

Extract state-action pairs (s, a) from expert

trajectories (D,,,c,)-

Filter demos via reward threshold (e.g., high
threshold = 100 for quality control).

Algorithm 1 Inverse soft Q-Learning (ISQL) for Pentesting
Require:
Input: Expert trajectories Dexpert = {(8,a,5")}, states s, Actions a, dis-
count factor v, entropy temperature «, learning rate 7, total iterations T'
//Expert trajectories Dexpert are from pentesting environment;
//states s, such as configuration, vulnerability information of all hosts
(open ports, access level...) ;
//Actions a, such as scans, exploits, or privilege escalations etc. similar
to expert behavior.
Ensure:
Output: Learned Q-function Qg(s,a) from which policy w(al|s) o
exp(Qa(s,a)/a) can be derived
1: Initialize Q-function Qy(s,a) with parameters 0
2: fort=1to T do
3: Sample batch {(s,a,s")} ~ Dexpert
4: Compute soft values: V(s') - a-log)_ . exp(Qq(s’,a’)/a)
5: Compute reward: 7 < (Qg(s,a) —yV(s'))
6: Compute loss:

£ Bl + BlQo(s.a) - 7V (s)] + B[]

i Update Q-function parameters: 6 <— 60 —nVoLl
8: end for

3. PT-ISQL —ISQL Workflow (2)

Step 2: Iterative ISQL Training

* Goal: Learn a soft Q-function that aligns with expert behavior.

Algorithm 1 Inverse soft Q-Learning (ISQL) for Pentesting - Key EquationS'
Require: ’
Input: Expert trajectories Dexpert = {(s,a,5")}, states s, Actions a, dis- Qtarget(s’a): 7 (S,Cl)+y Ea’ [Q(S ,,Cl ’)]—alogn-(a '|S’)

count factor 7, entropy temperature «, learning rate 7, total iterations 7'
//Expert trajectories Dexpery are from pentesting environment;

//states s, such as configuration, vulnerability information of all hosts I" o reward’ i dlSCOUIlt faCtor’ o= entropy temperature’ T= pOhCy
(open ports, access level...) ; POIICY: 7T(CI|S) = goftmax (Q(S,Cl)/ o

//Actions a, such as scans, exploits, or privilege escalations ete. similar
to expert behavior.

Ensure: * Training Loop:
Output: Learned Q-function Qy(s,a) from which policy w(als) o
exp(Qo(s,a)/a) can be derived e Initialize Q_function (Qe)
1: Initialize Q-function Qg(s,a) with parameters 0
2 for t = 1 to T do * Sample batch from D,
3: Sample batch {(s,a,s")} ~ Dexpert .
4 (Compits soft valies: V) 1085 g0yl) * Compute loss (MSE between predicted/ target Q-values).
5: Compute reward: 7 < (Qg(s,a) — ¥V (s')) ° Update Q Vla gradlent descent.
6: Compute loss: e

F 1 A
£+ Bl + BlQstea) — R+ L A Step 3: Agent Execution
7: Update Q-function parameters: 6 <— 0 — nVoLl
8: end for -

Agent uses learned m to perform pentesting tasks (e.g., reach sensitive hosts,
avoid honeypots).

4. Evaluation —Experiment Setup

Network, tools and evaluation metrics

Environment & Tools

Platform: Kali Linux VM + MiniConda (Python 3.x).
Simulator: NASim v0.12.0 (“small-honeypot” network).
Network Topology:

4 subnets, 8 hosts (Linux/Windows), 3 services (HTTP, SSH, FTP).

« Sensitive hosts: (2,0) and (4,0) (reward = 100).
» Honeypot: (3,2) (penalty = -100).

Evaluation Metrics

Honeypot Invasion Probability: Likelihood of agent interacting with honeypot (lower = better).

Average Cumulative Reward: Reflects efficiency/stealth (higher = better).

Goal-Reached Probability: Likelihood of reaching sensitive hosts (higher = better).

Firewall Server Valuable
]
I |
ﬂl
L e ol
User Heneypot

Internat

40

Subnet 4

(1,00
Submet 1

e @2

Subnet 3

2.3

4. Evaluation —Key Result (1)

Expert Demo Quality & Quantity

O Influence of Demo Threshold

Low Threshold (21): Avg. reward = 98.80 + 41.14 (high variance).

High Threshold (100): Avg. reward = 134.86 *+ 21.23 (higher reward, lower
variance).

Conclusion: Higher-quality demos (high threshold) improve stability.

O Minimum Demo Quantity

Stability Threshold: >30 demos (high threshold) — stable reward (116 % 15).
Comparison to GAIL-PT: PT-ISQL needs 30 demos vs. GAIL-PT’s 5000.
Conclusion: PT-ISQL is highly data-efficient.

Episode

Rewards with Different Thresholds

150

Reward

1o

Group = Low Threshold

30] 50
Number of Expert Demonstrations

—— High threshold
—— Low threshold

100 1000

Group = High Threshold

200 -
.) o ARk ;
100 - WA e N 1W
=
S 0 - -
11} Expert Demo Nuimbe
o= ; 3
—100 - - » 100t
—200 -4 T T T T T
0 10000 20000 0 10000 20000
Step Step
Group = Low Threshold Group = High Threshold
Expert Dema Number
1 50
= 10 — 108
300 -1 0 1000 =
200 —+
100 —H
0 -

" 4. Evaluation — Key Result (2)

ISQL vs. Simple Q-Learning

O Metric comparisons

A Convergence Speed

= PT-ISQL converges by 20,000 steps;
RL still learns at 100,000 steps.

)

| o
1

I\
- NIIN PL/ N r\r

Mf

T T T T
o 20000 40000 G0000
Step

10
A |
wrl .’ rﬂn’f\w’\f\ A id
V] | 3ee] W Y
I 7 ¥4 Mr‘
‘o 0.6
8 |
Q
Zoa
5
2])
=]
Group & 9.2 5
_:zur L ji?uD
: Ir: 0.0 i
90000, 10000 o 20000 40000 60000 100000
Step

Honeypot probability, Average reward, Goal probability vs. Training steps

Metric

PT-ISQL (ISQL)

Honeypot Invasion Prob.

Avg. Reward

Goal-Reached Prob.

~0.05 (early convergence)

132 + 14 (stable)

Simple Q-Learning (RL)

~0.25 (unstable)

Fluctuates (some runs fail)

~0.9 (by 20,000 steps)

~0.6 (after 100,000 steps)

5. Conclusion and Future Work

QO PT-ISQL uses ISQL to automate pentesting with minimal expert data.
O Outperforms RL in convergence speed, stability, and task performance.

O Reduces honeypot interactions and improves goal achievement.

O Validate PT-ISQL in larger simulated networks and real-world environments.
O Integrate PT-ISQL with tools like Deep Exploit for deployable use.

O Conduct qualitative comparisons with LLM-based agents.

References (1)

1. G. Deng et al., “PentestGPT: Evaluating and Harnessing Large Language Models for Automated Penetration Testing,” In proc. of 33rd
USENIX Security Symposium (USENIX Security 24), pp.847-864.

2. X. Shen et al., “Pentest Agent: Incorporating LLM Agents to Automated Penetration Testing”, arXiv:2411.05185v1 [cs.CR], Nov. 7,
2024.

3. A.Happe and J. Cito, “Getting pwn’d by Al:penetration testing with large language models,” In Proc. of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp.2082-2086.

4. H. Kong et al., “VulnBot: Autonomous penetration testing for a multi-agent collaborative framework”, arXiv:2501.13411v1 [cs.SE]
23 Jan. 2025

5. Z.Hu, R. Beuran, and Y. Tan, “Automated penetration testing using deep reinforcement learning,” in 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroSPW), pp. 2-10, IEEE, 9 2020.

6. L Jabr, Y. Salman, M. Shqair, and A. Hawash, “Penetration testing and attack automation simulation: deep reinforcement learning
approach,” An-Najah University Journal for Research, Apr. 2024, pp. 7-14. DOI:10.35552/anujr.a.39.1.2231

7. J.Yiand X. Liu, “Deep reinforcement learning for intelligent penetration testing path design,” Applied Sciences, vol. 13, p. 9467, Aug.
2023.

8. L. V. Hoang, et al., “Leveraging deep reinforcement learning for automating penetration testing in reconnaissance and exploitation
phase,” in Int. Conf. on Computing and Communication Technologies, pp. 41-46, IEEE, 12 2022.

9. J. Chen, S. Hu, H. Zheng, C. Xing, and G. Zhang, “Gail-PT: An intelligent penetration testing framework with generative adversarial
imitation learning,” Computers Security, vol. 126, p. 103055, 3 2023.

References (2)

10.

11.

12.

13.

14.

15.

16.

17.

F. M. Zennaro and L. Erdodi, “Modelling penetration testing with reinforcement learning using capture-the-flag challenges:
tradeoffs between model-free learning and a priori knowledge” IET Information Security, vol.17, pp.441-457, 5 2023.

Y. Wang, et al., “Dqfd-aipt: An intelligent penetration testing framework incorporating expert demonstration data,” Security
and Communication Networks, vol. 2023, pp. 1-15, 5. 2023.

M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi, “A survey of imitation learning: Algorithms, recent developments, and
challenges,” IEEE Transactions on Cybernetics, vol.54, pp. 7137-7168, Dec. 2024.

X. Ou, S. Govindavajhala and A. W. Appel, “Mulval: A logic-based network security analyzer,” in Proc. of USENIX security
symposium, vol. 8, pp. 113-128, 2005.

T. Isao, “Deep exploit,” 2018. https://github.com/130-bbr-

bbg/machine learning_security/blob/master/DeepExploit/README.md / [retrieved: Sept. 2025]

G. Farquhar et al., “Growing action spaces,”’in Proc. of the 37th International Conference on Machine Learning, vol. 119, pp.
3040-3051, PMLR, 5 2020.

J. Ho and S. Ermon, “Generative adversarial imitation learning,” Advances in neural information processing systems, vol. 29,
pp. 4572-4580, Dec. 2016.

J. Schwartz and H.Kurniawati, “Autonomous penetration testing using reinforcement learning,” CoRR, vol. abs/1905.05965,
2019.

