Towards Automated Penetration Testing using Inverse Soft-Q Learning

Dongfang Song, Yuhong Li, Ala Berzinji, Elias Seid

Department of Computer and Systems Sciences, Stockholm University, Sweden

Contact email: yh2025@dsv.su.se

1. Aims and Contributions

We aimed at:

□ Building a compact, robust and reliable automated penetration testing (pentesting) system based on Inverse Soft-Q Learning (ISQL)

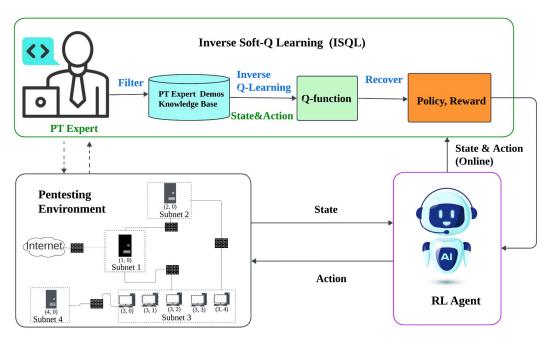
Contributions of our study:

- □ We propose an architecture for realizing automated pentesting based on ISQL;
- ☐ We implement a method for encoding pentesting tasks and actions, demonstrating that ISQL can be effectively used in automating pentesting;
- □ We conduct thorough experiments in a simulated network to evaluate the proposed PT-ISQL approach, and provide an in-depth analysis to the results.

2. SOTA—Focus on RL & IL for Pentesting

- □ Pentesting with Reinforcement Learning (RL)
 - Core idea: Agent learns via environment interaction (Agent \rightarrow Action \rightarrow State Change \rightarrow Reward).
 - Examples:
 - Deep Exploit (A3C algorithm): Automates server exploitation but struggles with large discrete action spaces.
 - DQN-based attack path optimization: Relies on known network topology (unrealistic for real-world use).
 - **Key limitations**: RL's trial-and-error leads to instability; large state/action spaces slow convergence.
- □ Pentesting with Imitation Learning (IL): a specialized form of RL
 - Core idea: Agent learns from expert demonstrations (infers reward/policy).
 - Examples:
 - GAIL-PT: Combines GAIL + Deep Exploit but needs hyperparameter tuning and 5000 expert demos.
 - DQfD-AIPT: Reduces overfitting but requires massive expert data.
 - Key limitation: large amount of expert data are needed to build the expert database
- **Our Advantage:** PT-ISQL uses ISQL to avoid complex adversarial training while minimizes the needed expert data.

3. PT-ISQL —System Architecture



Three Core Components

- ISQL Component (Core)
 - Input: Expert demonstrations (state-action pairs: e.g., scan, exploit, privilege escalation).
 - Output: Learned soft Q-function (implicitly captures reward + policy).
- RL Agent
 - Uses ISQL-learned policy to act autonomously (e.g., discover attack paths, avoid honeypots).
 - Adapts to dynamic defenses (e.g., patched systems, IDS).
- Pentesting Environment
 - Returns state info (host config, vulnerabilities) after agent/expert actions.
 - In our paper, we used a simulated network (e.g., NASim "small-honeypot" topology: 4 subnets, 8 hosts, 1 honeypot).

3. PT-ISQL —ISQL Workflow (1)

Step 1: Process Expert Demonstrations

- Extract state-action pairs (s, a) from expert trajectories (D_{expert}) .
- Filter demos via reward threshold (e.g., high threshold = 100 for quality control).

Algorithm 1 Inverse soft Q-Learning (ISQL) for Pentesting

Require:

Input: Expert trajectories $\mathcal{D}_{\text{expert}} = \{(s, a, s')\}$, states **s**, Actions **a**, discount factor γ , entropy temperature α , learning rate η , total iterations T

//Expert trajectories $\mathcal{D}_{\text{expert}}$ are from pentesting environment;

//states s, such as configuration, vulnerability information of all hosts (open ports, access level...);

//Actions **a**, such as scans, exploits, or privilege escalations etc. similar to expert behavior.

Ensure:

Output: Learned Q-function $Q_{\theta}(s, a)$ from which policy $\pi(a|s) \propto \exp(Q_{\theta}(s, a)/\alpha)$ can be derived

- 1: Initialize Q-function $Q_{\theta}(s, a)$ with parameters θ
- 2: **for** t = 1 to T **do**
- Sample batch $\{(s, a, s')\} \sim \mathcal{D}_{\text{expert}}$
- 4: Compute soft values: $V(s') \leftarrow \alpha \cdot \log \sum_{a'} \exp(Q_{\theta}(s', a')/\alpha)$
- 5: Compute reward: $\hat{r} \leftarrow (Q_{\theta}(s, a) \gamma V(s'))$
- 6: Compute loss:

$$\mathcal{L} \leftarrow -E[\hat{r}] + E[Q_{\theta}(s, a) - \gamma V(s')] + \frac{1}{4\alpha} E[\hat{r}^2]$$

- 7: Update Q-function parameters: $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}$
- 8: end for

3. PT-ISQL —ISQL Workflow (2)

Algorithm 1 Inverse soft Q-Learning (ISQL) for Pentesting

Require:

Input: Expert trajectories $\mathcal{D}_{\text{expert}} = \{(s, a, s')\}$, states **s**, Actions **a**, discount factor γ , entropy temperature α , learning rate η , total iterations T//Expert trajectories $\mathcal{D}_{\text{expert}}$ are from pentesting environment;

//states **s**, such as configuration, vulnerability information of all hosts

//states ${\bf s},$ such as configuration, vulnerability information of all hosts (open ports, access level...) ;

//Actions \mathbf{a} , such as scans, exploits, or privilege escalations etc. similar to expert behavior.

Ensure:

Output: Learned Q-function $Q_{\theta}(s, a)$ from which policy $\pi(a|s) \propto \exp(Q_{\theta}(s, a)/\alpha)$ can be derived

- 1: Initialize Q-function $Q_{\theta}(s, a)$ with parameters θ
- 2: for t = 1 to T do
- 3: Sample batch $\{(s, a, s')\} \sim \mathcal{D}_{\text{expert}}$
- 4: Compute soft values: $V(s') \leftarrow \alpha \cdot \log \sum_{a'} \exp(Q_{\theta}(s', a')/\alpha)$
- 5: Compute reward: $\hat{r} \leftarrow (Q_{\theta}(s, a) \gamma V(s'))$
- 6: Compute loss:

$$\mathcal{L} \leftarrow -E[\hat{r}] + E[Q_{\theta}(s, a) - \gamma V(s')] + \frac{1}{4\alpha} E[\hat{r}^2]$$

- 7: Update Q-function parameters: $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}$
- 8: end for

Step 2: Iterative ISQL Training

- Goal: Learn a soft Q-function that aligns with expert behavior.
- Key Equations:

$$Q_{target}(s,a) = r(s,a) + \gamma \operatorname{E}_{a'}[Q(s',a')] - \alpha \log \pi(a'|s')$$

 $r = \text{reward}, \ \gamma = \text{discount factor}, \ \alpha = \text{entropy temperature}, \ \pi = \text{policy}$
Policy: $\pi(a|s) = \operatorname{softmax}(Q(s,a)/\alpha$

- Training Loop:
 - Initialize Q-function (Q_{Θ}) .
 - Sample batch from D_{expert} .
 - Compute loss (MSE between predicted/ target Q-values).
 - Update Q_{Θ} via gradient descent.

Step 3: Agent Execution

• Agent uses learned π to perform pentesting tasks (e.g., reach sensitive hosts, avoid honeypots).

4. Evaluation — Experiment Setup

Network, tools and evaluation metrics

Environment & Tools

Platform: Kali Linux VM + **MiniConda** (Python 3.x).

Simulator: NASim v0.12.0 ("small-honeypot" network).

Network Topology:

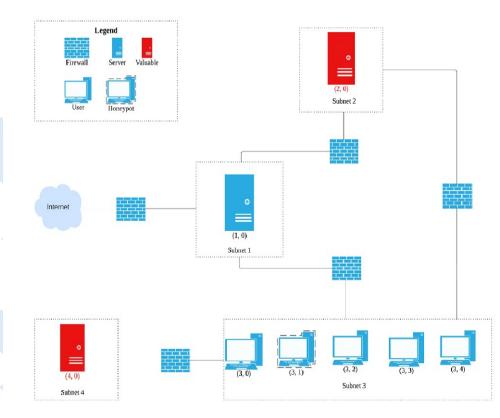
- 4 subnets, 8 hosts (Linux/Windows), 3 services (HTTP, SSH, FTP).
- Sensitive hosts: (2,0) and (4,0) (reward = 100).
- Honeypot: (3,2) (penalty = -100).

Evaluation Metrics

Honeypot Invasion Probability: Likelihood of agent interacting with honeypot (lower = better).

Average Cumulative Reward: Reflects efficiency/stealth (higher = better).

Goal-Reached Probability: Likelihood of reaching sensitive hosts (higher = better).



4. Evaluation —Key Result (1)

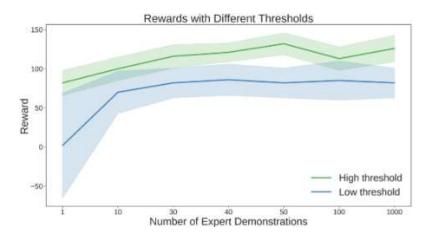
Expert Demo Quality & Quantity

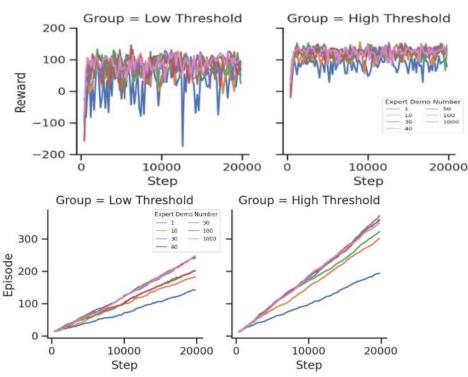
☐ Influence of Demo Threshold

- Low Threshold (21): Avg. reward = 98.80 ± 41.14 (high variance).
- **High Threshold (100)**: Avg. reward = 134.86 ± 21.23 (higher reward, lower variance).
- Conclusion: Higher-quality demos (high threshold) improve stability.

■ Minimum Demo Quantity

- **Stability Threshold**: \ge 30 demos (high threshold) \rightarrow stable reward (116 ± 15).
- Comparison to GAIL-PT: PT-ISQL needs 30 demos vs. GAIL-PT's 5000.
- Conclusion: PT-ISQL is highly data-efficient.

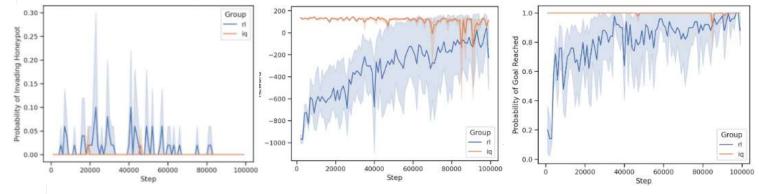




4. Evaluation — Key Result (2)

ISQL vs. Simple Q-Learning

- **□** Metric comparisons
- **□** Convergence Speed
 - PT-ISQL converges by 20,000 steps;
 RL still learns at 100,000 steps.



Honeypot probability, Average reward, Goal probability vs. Training steps

Metric	PT-ISQL (ISQL)	Simple Q-Learning (RL)
Honeypot Invasion Prob.	~0.05 (early convergence)	~0.25 (unstable)
Avg. Reward	132 ± 14 (stable)	Fluctuates (some runs fail)
Goal-Reached Prob.	~0.9 (by 20,000 steps)	~0.6 (after 100,000 steps)

5. Conclusion and Future Work

Conclusion:

- □ PT-ISQL uses ISQL to automate pentesting with minimal expert data.
- □ Outperforms RL in convergence speed, stability, and task performance.
- □ Reduces honeypot interactions and improves goal achievement.

Future work:

- □ Validate PT-ISQL in larger simulated networks and real-world environments.
- ☐ Integrate PT-ISQL with tools like Deep Exploit for deployable use.
- □ Conduct qualitative comparisons with LLM-based agents.

References (1)

- 1. G. Deng et al., "PentestGPT: Evaluating and Harnessing Large Language Models for Automated Penetration Testing," In proc. of 33rd USENIX Security Symposium (USENIX Security 24), pp.847–864.
- 2. X. Shen et al., "Pentest Agent: Incorporating LLM Agents to Automated Penetration Testing", arXiv:2411.05185v1 [cs.CR], Nov. 7, 2024.
- 3. A. Happe and J. Cito, "Getting pwn'd by AI:penetration testing with large language models," In Proc. of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp.2082–2086.
- 4. H. Kong et al., "VulnBot: Autonomous penetration testing for a multi-agent collaborative framework", arXiv:2501.13411v1 [cs.SE] 23 Jan. 2025
- 5. Z. Hu, R. Beuran, and Y. Tan, "Automated penetration testing using deep reinforcement learning," in 2020 IEEE European Symposium on Security and Privacy Workshops (EuroSPW), pp. 2–10, IEEE, 9 2020.
- 6. I. Jabr, Y. Salman, M. Shqair, and A. Hawash, "Penetration testing and attack automation simulation: deep reinforcement learning approach," An-Najah University Journal for Research, Apr. 2024, pp. 7-14. DOI:10.35552/anujr.a.39.1.2231
- 7. J. Yi and X. Liu, "Deep reinforcement learning for intelligent penetration testing path design," Applied Sciences, vol. 13, p. 9467, Aug. 2023.
- 8. L. V. Hoang, et al., "Leveraging deep reinforcement learning for automating penetration testing in reconnaissance and exploitation phase," in Int. Conf. on Computing and Communication Technologies, pp. 41–46, IEEE, 12 2022.
- 9. J. Chen, S. Hu, H. Zheng, C. Xing, and G. Zhang, "Gail-PT: An intelligent penetration testing framework with generative adversarial imitation learning," Computers Security, vol. 126, p. 103055, 3 2023.

References (2)

- 10. F. M. Zennaro and L. Erdödi, "Modelling penetration testing with reinforcement learning using capture-the-flag challenges: tradeoffs between model-free learning and a priori knowledge" IET Information Security, vol.17, pp.441–457, 5 2023.
- 11. Y. Wang, et al., "Dqfd-aipt: An intelligent penetration testing framework incorporating expert demonstration data," Security and Communication Networks, vol. 2023, pp. 1–15, 5. 2023.
- 12. M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi, "A survey of imitation learning: Algorithms, recent developments, and challenges," IEEE Transactions on Cybernetics, vol.54, pp. 7137-7168, Dec. 2024.
- 13. X. Ou, S. Govindavajhala and A. W. Appel, "Mulval: A logic-based network security analyzer," in Proc. of USENIX security symposium, vol. 8, pp. 113–128, 2005.
- 14. T. Isao, "Deep exploit," 2018. https://github.com/13o-bbr-bbq/machine_learning_security/blob/master/DeepExploit/README.md / [retrieved: Sept. 2025]
- 15. G. Farquhar et al., "Growing action spaces," in Proc. of the 37th International Conference on Machine Learning, vol. 119, pp. 3040–3051, PMLR, 5 2020.
- 16. J. Ho and S. Ermon, "Generative adversarial imitation learning," Advances in neural information processing systems, vol. 29, pp. 4572-4580, Dec. 2016.
- 17. J. Schwartz and H.Kurniawati, "Autonomous penetration testing using reinforcement learning," CoRR, vol. abs/1905.05965, 2019.