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1. Aims and Contributions

Building a compact, robust and reliable automated penetration testing (pentesting) system
based on Inverse Soft-Q Learning (ISQL)

We propose an architecture for realizing automated pentesting based on ISQL;

We implement a method for encoding pentesting tasks and actions, demonstrating that ISQL
can be effectively used in automating pentesting;

We conduct thorough experiments in a simulated network to evaluate the proposed PT-ISQL
approach, and provide an in-depth analysis to the results.



2. SOTA—Focus on RL & IL for Pentesting

O Pentesting with Reinforcement Learning (RL)
* Core idea: Agent learns via environment interaction (Agent — Action — State Change — Reward).
= Examples:

* Deep Exploit (A3C algorithm): Automates server exploitation but struggles with large discrete action spaces.
* DQN-based attack path optimization: Relies on known network topology (unrealistic for real-world use).

Key limitations: RL’s trial-and-error leads to instability; large state/action spaces slow convergence.

O Pentesting with Imitation Learning (IL): a specialized form of RL

= Core idea: Agent learns from expert demonstrations (infers reward/policy).
= Examples:

* GAIL-PT: Combines GAIL + Deep Exploit but needs hyperparameter tuning and 5000 expert demos.
* DQfD-AIPT: Reduces overfitting but requires massive expert data.

» Key limitation: large amount of expert data are needed to build the expert database

O Our Advantage: PT-ISQL uses ISQL to avoid complex adversarial training while minimizes the needed expert data.



I 3. PT-ISQL —System Architecture
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Three Core Components

¢ ISQL Component (Core)

* Input: Expert demonstrations (state-action pairs: e.g.,
scan, exploit, privilege escalation).

* Output: Learned soft Q-function (implicitly captures
reward + policy).

* RLAgent

» Uses ISQL-learned policy to act autonomously (e.g.,
discover attack paths, avoid honeypots).

* Adapts to dynamic defenses (e.g., patched systems, IDS).

* Pentesting Environment

* Returns state info (host config, vulnerabilities) after
agent/expert actions.

* In our paper, we used a simulated network (e.g., NASim
“small-honeypot” topology: 4 subnets, 8 hosts, 1
honeypot).



3. PT-ISQL —ISQL Workflow (1)

Step 1: Process Expert Demonstrations

Extract state-action pairs (s, a) from expert

trajectories (D,,,c,)-

Filter demos via reward threshold (e.g., high
threshold = 100 for quality control).

Algorithm 1 Inverse soft Q-Learning (ISQL) for Pentesting
Require:
Input: Expert trajectories Dexpert = {(8,a,5")}, states s, Actions a, dis-
count factor v, entropy temperature «, learning rate 7, total iterations T'
//Expert trajectories Dexpert are from pentesting environment;
//states s, such as configuration, vulnerability information of all hosts
(open ports, access level...) ;
//Actions a, such as scans, exploits, or privilege escalations etc. similar
to expert behavior.
Ensure:
Output: Learned Q-function Qg(s,a) from which policy w(al|s) o
exp(Qa(s,a)/a) can be derived
1: Initialize Q-function Qy(s,a) with parameters 0
2: fort=1to T do
3: Sample batch {(s,a,s")} ~ Dexpert
4: Compute soft values: V(s') - a-log)_ . exp(Qq(s’,a’)/a)
5: Compute reward: 7 < (Qg(s,a) —yV(s'))
6: Compute loss:

£ Bl + BlQo(s.a) - 7V (s)] + B[]

i Update Q-function parameters: 6 <— 60 —nVoLl
8: end for




3. PT-ISQL —ISQL Workflow (2)

Step 2: Iterative ISQL Training

* Goal: Learn a soft Q-function that aligns with expert behavior.

Algorithm 1 Inverse soft Q-Learning (ISQL) for Pentesting - Key EquationS'
Require: ’
Input: Expert trajectories Dexpert = {(s,a,5")}, states s, Actions a, dis- Qtarget(s’a): 7 (S,Cl)+y Ea’ [Q(S ,,Cl ’)]—alogn-(a '|S’)

count factor 7, entropy temperature «, learning rate 7, total iterations 7'
//Expert trajectories Dexpery are from pentesting environment;

//states s, such as configuration, vulnerability information of all hosts I" o reward’ i dlSCOUIlt faCtor’ o= entropy temperature’ T= pOhCy
(open ports, access level...) ; POIICY: 7T(CI|S) = goftmax (Q(S,Cl)/ o

//Actions a, such as scans, exploits, or privilege escalations ete. similar
to expert behavior.

Ensure: * Training Loop:
Output: Learned Q-function Qy(s,a) from which policy w(als) o
exp(Qo(s,a)/a) can be derived e Initialize Q_function (Qe)
1: Initialize Q-function Qg(s,a) with parameters 0
2 for t = 1 to T do * Sample batch from D,
3: Sample batch {(s,a,s")} ~ Dexpert .
4 (Compits soft valies: V) 1085 g0yl ) * Compute loss (MSE between predicted/ target Q-values).
5: Compute reward: 7 < (Qg(s,a) — ¥V (s')) ° Update Q Vla gradlent descent.
6: Compute loss: e

F 1 A
£+ Bl + BlQstea) — R+ L A Step 3: Agent Execution
7: Update Q-function parameters: 6 <— 0 — nVoLl
8: end for -

Agent uses learned m to perform pentesting tasks (e.g., reach sensitive hosts,
avoid honeypots).



4. Evaluation —Experiment Setup

Network, tools and evaluation metrics

Environment & Tools

Platform: Kali Linux VM + MiniConda (Python 3.x).
Simulator: NASim v0.12.0 ( “small-honeypot” network).
Network Topology:

4 subnets, 8 hosts (Linux/Windows), 3 services (HTTP, SSH, FTP).

« Sensitive hosts: (2,0) and (4,0) (reward = 100).
» Honeypot: (3,2) (penalty = -100).

Evaluation Metrics

Honeypot Invasion Probability: Likelihood of agent interacting with honeypot (lower = better).

Average Cumulative Reward: Reflects efficiency/stealth (higher = better).

Goal-Reached Probability: Likelihood of reaching sensitive hosts (higher = better).
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4. Evaluation —Key Result (1)

Expert Demo Quality & Quantity

O Influence of Demo Threshold

Low Threshold (21): Avg. reward = 98.80 + 41.14 (high variance).

High Threshold (100): Avg. reward = 134.86 *+ 21.23 (higher reward, lower
variance).

Conclusion: Higher-quality demos (high threshold) improve stability.

O Minimum Demo Quantity

Stability Threshold: >30 demos (high threshold) — stable reward (116 % 15).
Comparison to GAIL-PT: PT-ISQL needs 30 demos vs. GAIL-PT’s 5000.
Conclusion: PT-ISQL is highly data-efficient.
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" 4. Evaluation — Key Result (2)

ISQL vs. Simple Q-Learning

O Metric comparisons

A Convergence Speed

= PT-ISQL converges by 20,000 steps;
RL still learns at 100,000 steps.
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Metric

PT-ISQL (ISQL)

Honeypot Invasion Prob.

Avg. Reward

Goal-Reached Prob.

~0.05 (early convergence)

132 + 14 (stable)

Simple Q-Learning (RL)

~0.25 (unstable)

Fluctuates (some runs fail)

~0.9 (by 20,000 steps)

~0.6 (after 100,000 steps)




5. Conclusion and Future Work

QO PT-ISQL uses ISQL to automate pentesting with minimal expert data.
O Outperforms RL in convergence speed, stability, and task performance.

O Reduces honeypot interactions and improves goal achievement.

O Validate PT-ISQL in larger simulated networks and real-world environments.
O Integrate PT-ISQL with tools like Deep Exploit for deployable use.

O Conduct qualitative comparisons with LLM-based agents.
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