

SECURWARE 2025

JÖRN-MARC SCHMIDT AND ALEXANDER LAWALL

COMPARISON OF PASSWORD-AUTHENTICATED KEY EXCHANGE SCHEMES ON ANDROID

joern-marc.schmidt@iu.org
alexander.lawall@iu.org
IU International University of Applied Sciences
Erfurt, Germany

Jörn-Marc Schmidt

2024-present	Professor for Cyber Security IU International University of Applied Sciences, Germany
2018–2023	Lead Engineer, Cryptography Engineering and Solutions, Deutsche Bank AG Eschborn, Germany
2013–2018	Senior IT-Security Consultant, secunet Security Networks AG, Eschborn, Germany
2010–2013	Group Coordinator, Institute for Applied Information Processing and Communication (IAIK), Graz University of Technology, Austria
2006–2009	Ph.D. Studies at Graz University of Technology, Graz, Austria
2002–2006	Study at University of Mannheim, Mannheim, Germany

AGENDA

PAKE Schemes and Applications	1		
Setup and Implementations	2		
Performance and Energy Consumption Results			
Conclusions	4		

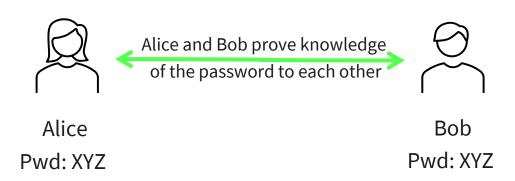
PASSWORD AUTHENTICATED KEY AGREEMENT (PAKE)

Passwords are human-friendly:

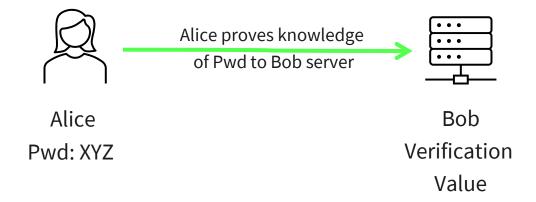
- Rememberable
- Easily entered manually

Do not provide the security level of cryptographic keys

PAKEs combine both worlds


Mobile constraints: CPU, battery, latency, libraries

PAKE TYPES



Balanced PAKE Schemes

Mutual Authentication using the password

Augmented PAKE Schemes

Alice proves possession of the password Bob uses a verification value Bob cannot impersonate Alice to others

EVALUATED SCHEMES

- Nouri Alnahawi et al. (2025) discuss in a SoK paper:
 - 30 balanced schemes
 - − 19 augmented Schemes
- ? Which to evaluate?
- Real-World Usage
- and a PQ scheme

- —Dragonfly used in WPA3
- -PACE used in travel documents

- -CPACE used by Facebook Messenger
- OCAKE as Post-Quantum Scheme and OEKE as comparison

EVALUATED SCHEMES

—Dragonfly – used in WPA3

—PACE – used in travel documents

–CPACE – used by FacebookMessenger

OCAKE – as Post-QuantumScheme and OEKE for comparison

- SRP – used in TLS

SPAKE2+ - used by Apple HomeKit/Car
 Key and the Matter Protocol and
 SPAKE2 for comparison

- Transformation of Lyu et al. applied to OCAKE – as PQ scheme

IMPLEMENTATIONS

- -Implementations for Android,
 - —Using Kotlin/JAVA and
 - Bouncy Castle (Version 1.81)
 - -Build for API 34 with ProGuard/R8 minification

PRIMITIVES TO PROVIDE A SECURITY LEVEL OF 128 BITS

Scheme	Group	Cipher	Hash	Mapping	Others		
Balanced Schemes							
OEKE	3072-bit MODP Group	AES-CBC	SHA256	-	-		
OEKE (ECC)	secp256r1	AES-CBC	SHA256	-	-		
OCAKE	ML-KEM512	AES-CBC	SHA256	-	PBKDF2-HMAC-SHA256		
Dragonfly	secp256r1	-	SHA256	Hunting and Pecking	HKDF-SHA256		
SPAKE2	secp256r1	-	SHA256		HKDF-SHA256		
PACE(IM)	secp256r1	AES-CBC	SHA256	Integrated Mapping	PBKDF2-HMAC-SHA256		
PACE(GM)	secp256r1	AES-CBC	SHA256	Generic Mapping	PBKDF2-HMAC-SHA256		
CPACE	secp256r1	-	SHA256	Integrated Mapping	-		
Augmented Schemes							
SRP	3072-bit MODP Group	-	SHA1/SHA256	-	-		
SPAKE2+	secp256r1	-	SHA256	-	HKDF-SHA256/scrypt		
aPAKE-PQC	ML-KEM512	AES-GCM	SHA256	-	-		

MEASUREMENT SETUP

- − Google Pixel 7 Pro with
 - − Google Tensor G2 SoC
 - -12GB RAM
 - -Android 16
- Connected via USB to a Windows PC

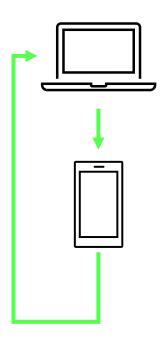
During the Tests:

- Airplane mode on
- All connectivity disabled
- Adaptive Battery features / energy saving mode turned off
- Background processes set to zero

Conducted Microbenchmarking using Android Jetpack Benchmark Library (version 1.3.4)

Compute time and device-side energy is evaluated Network overhead and radio power are not considered

BENCHMARKING



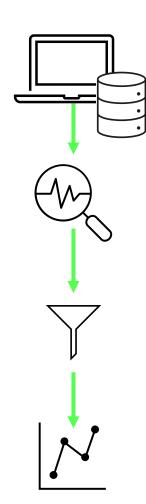
Compilation of Implementation and Tests

BENCHMARKING

Compilation of Implementation and Tests

Instrument tests via PowerShell

Microbenchmarking (50 runs per test)
Perfetto Trace per Test


Download JSON file with Results and Perfetto Traces

Repeat 100 times for performance measurements
Repeat 250 times in randomized test order
for energy measurements

```
"name": "mbpbCPACE",
   "params": {},
   "className": "com.libs.powerrails tests.PowerBe
   "totalRunTimeNs": 10122064620,
   "metrics": {
       "timeNs": {
            "minimum": 1384947.6756756757,
            "maximum": 1469565.4189189188,
            "median": 1444707.1148648649,
            "coefficientOfVariation": 0.01643272971
            "runs": [
                 1450385.0135135136,
                1391238.689189189,
                 1463612.6621621621,
L14S_ALIVE
L15M VDD SLC M
L7S SENSORS
aoc.logic
cpu.big
cou.little
cpu.mid
```

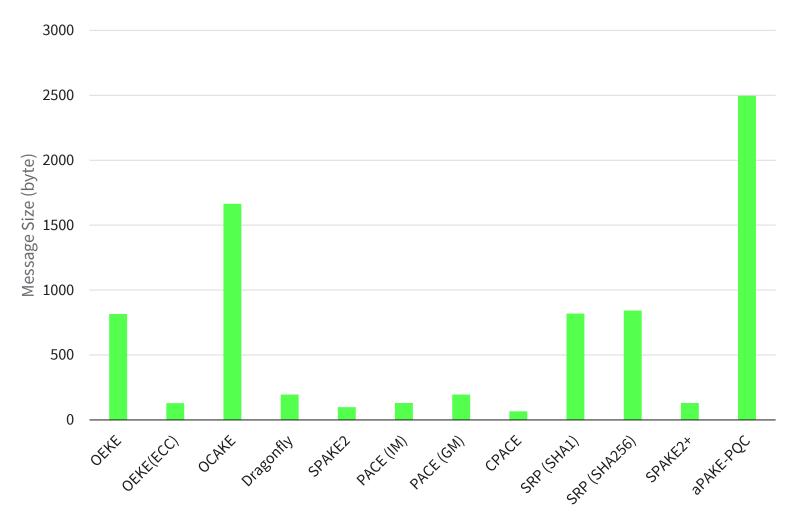
BENCHMARKING

Processing via Python

Extract timings per run

Extracted value for cpu.big power consumption

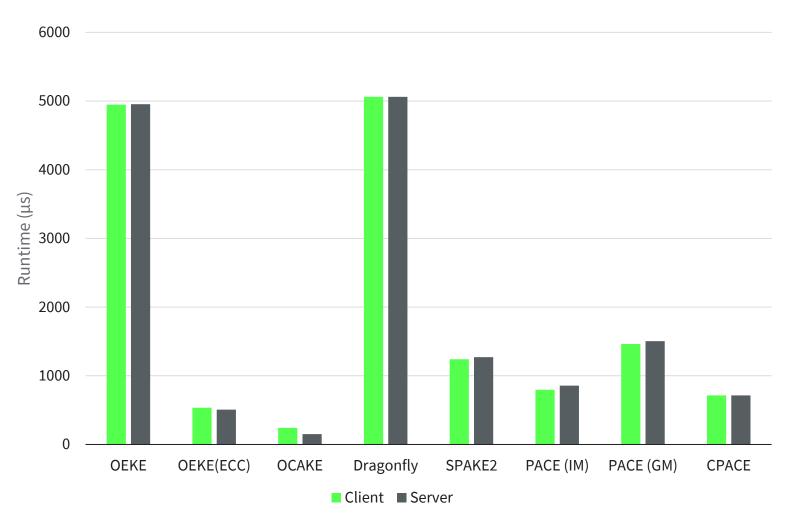
Remove outliers


>10x mean value of current measurements for performance test runs with fewer than 2 energy measurement points

Compute results

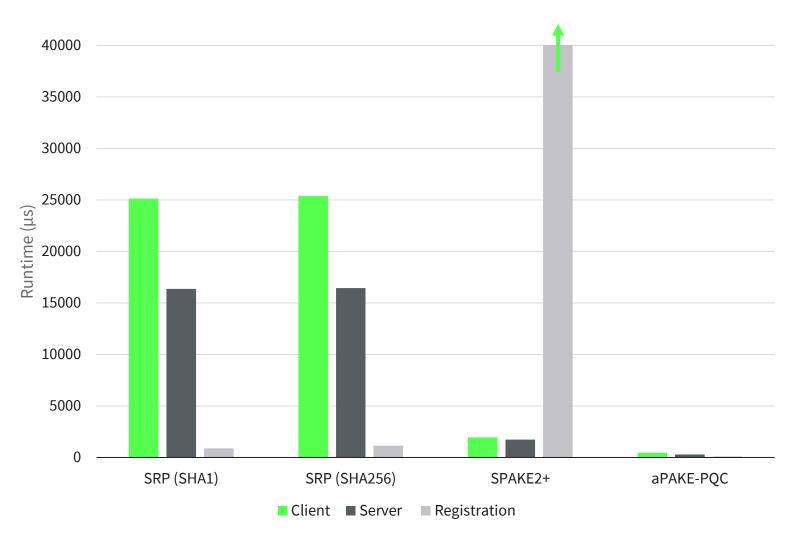
- on average 4,993 data points per performance tests
- 222 energy consumption results per test

EXCHANGED MESSAGES



- Elements are encoded as byte array
- ECC uses compressed points
- AES-encrypted messages include IV
- No further message overhead was added

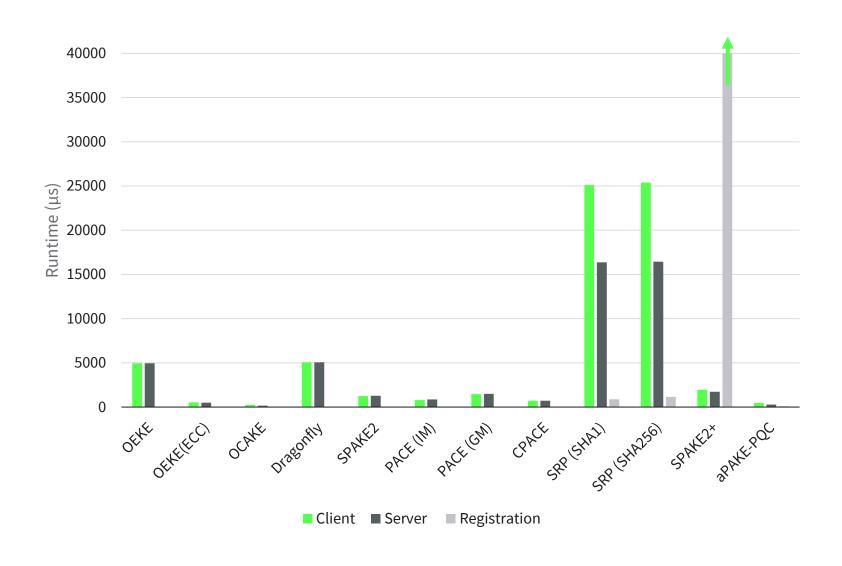
PERFORMANCE RESULTS – BALANCED SCHEMES



Performance impact:

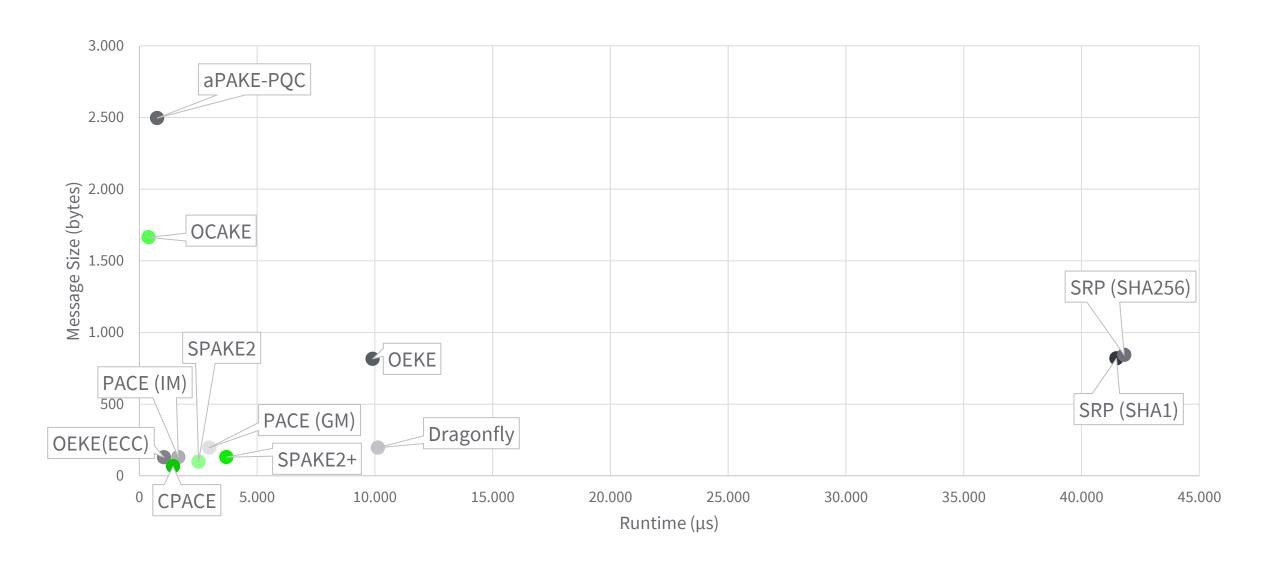
- OEKE uses 3072-bit MODP Group not secp256r1
- Dragonfly uses constant-time
 Hunting & Pecking (40 tries); nonconstant-time is ~4× faster but not recommended
- Integrated Mapping is more efficient than Generic Mapping, plus figures ignore network latency

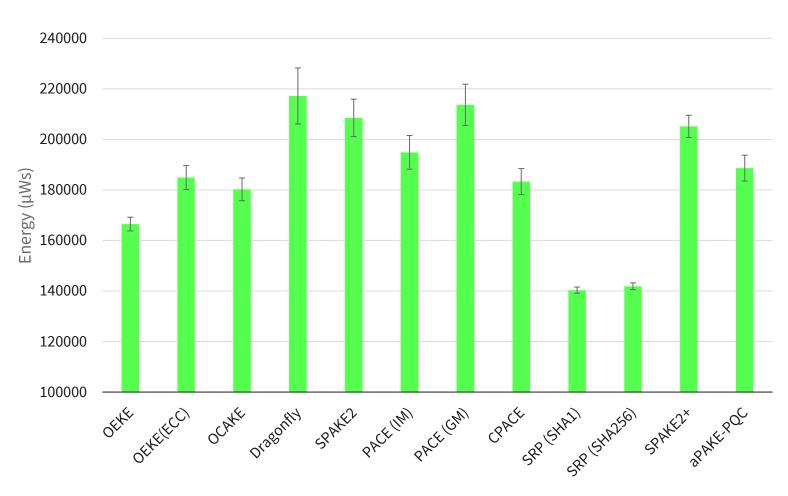
PERFORMANCE RESULTS – AUGMENTED SCHEMES



Performance impact:

- Registration of SPAKE2+ uses scrypt
 - Parameters (32768, 8, 1)
- SRP uses 3072-bit MODP Group not secp256r1, limited impact of the used hash-function


PERFORMANCE RESULTS – WHOLE PICTURE


PERFORMANCE VS MESSAGE SIZE

ENERGY CONSUMPTION

■ cpu.big Powerrail with 95% confidence interval

THREATS TO VALIDITY / LIMITATIONS

- −Test on a single device only
- —Use of Bouncy Castle how about other libraries?
- ─No (explicit) use of hardware accelerations
- Network overhead and power consumption is not considered
- Energy consumption measurements on cpu.big only
 Trace alignment errors caused discards
- Outliers of performance measurements are discarded

CONCLUSIONS & FUTURE WORK

- Mapping functions, primitives, and protocol class impact runtime and energy
- Memory-hard KDFs dominate augmented registration; tuning parameters trades security vs performance
- SRP shows lower big-core energy, ECC and KEM broadly similar
- Implementing efficient balanced and augmented PQC-PAKE is possible at cost of larger messages

Future Work:

- Expand the experiments to other hardware
- (Explicitly) use Hardware-accelerated cryptographic instructions
- Analyze the impact of side-channels

THANK YOU

Jörn-Marc Schmidt and Alexander Lawall
IU International University of Applied Sciences
Erfurt, Germany

- **▼** joern-marc.schmidt@iu.org
- ✓ alexander.lawall@iu.org