W

Identification of dua

iklas Lindskog, Ericsson Research,
icsson Research, Lund, Sw

Niklas Lindskog \\\\

Side-channels —in a nutshell

e Aside-channel:

Is a covert channel to extract information about the
internal state of electronic device.

Exists because there is a correlation between the
internal state of the device and an observable
information leakage.

Leakage be component-specific or target an entire
device.

Leakage be utilized by an attacker to extract secret
data, e.g., cryptographic keys

Leakage can also be utilized to monitor the health of
a device or a software process.

* Exists in many different variants

Logical (Memory access patterns, network traffic,
etc.)

Physical (Power consumption, electromagnetic
emissions, heat, etc.)

j_‘g‘_jg .

Ky

'
||||"||
-

O

)

Extracting physical side-channels

* Power consumption, electromagnetic emissions, heat,
acoustics etc.

e Can be measured locally by external probe or by
telemetries in device.

* Power consumption
* Measured using a resistor shunt in the VCC line.
* Candetermine fluctuations in power consumption.
* Granularity can be weakened by capacitor.
* Can also be measured from the “inside” by power management unit.

* Electromagnetic emissions
* Measured using an electromagnetic probe.
» Strength varies with power consumption.
* Noisier but can focus on part of chip.

e Heat

* Thermal camera
* (Can also be measured inside device.

Side-channel monitoring

Leverage covert channel to protect the device
* Enables runtime monitoring of processes without presence on device.
* Possible to retro-fit on existing equipment.
* Very difficult for attackers to stay undetected in side-channel
emissions.
Almost same procedure as side-channel analysis
* Lessfocused on data, more on instructions

* Goalistofind anomalies compared to expected behavior

Preferable to avoid repetitions — one-shot analysis

* Most attacks on cryptographic keys rely on repetition

Can be used both as standalone solution and as
complement to conventional security solutions.

Multi-process side-channel monitoring

* What if expected behavior of device is many
different simultaneous behavior?

* Process becomes twofold
* Determine which process that is executing
* |[sthe determined process executing correctly?

Training phase:

* Anomaly detection in presence of
uncorrelated processes is studied in the
existing literature

* Classifying multi-processes is not well-studied Monitoring phase:

%Measure @(_DI Train
on:::;

Measure
—_—

Classification

Q I
oy —— |

Classification

Train

Anomaly detection

Expected software
> Q
Malware

Anomaly detection

Multi-process side-channel monitoring

* How do we separate a side-channel
measurement into multiple
processes?

e Alternatives:

Classification Anomaly detection

* Multiple probes Measure _ BB]
* Possible but increases complexity of Training phase: % = =t
monitoring |
. |
* Createsuper-classes(i.e., A+B,A+C, =~ oo e
etc.) *

M Expected software
easure [0 Ff—
Monitoring phase: _— @E i L2 Q

T Malware

Anomaly detection

* Only possible if processes are correlated
* Learn to separate two processes from
single measurement

* Encode processor characteristics as a part of
classification?

* Qurapproach

Classification

Research questions

* \We want to determine

* |Isthe possible to perform multi-process anomaly detection using
side-channels?

* Isit possible to monitor two distinct software processes executing
simultaneously using a single side-channel probe?

* Assuming we can classify the processes, can we determine which process is
running on which processor?

%
r

ICC

[dentif

Our contributions

e Qur contribution is three-fold:

* Improving the practicability of multi-process side-channel
monitoring

* Multi-model machine learning solution

* Evaluation of feasibility in performing side-channel monitoring on
multiple, simultaneously executing, software processes.

 Machine learning-based approach to classify a single side-channel
measurement trace as two classes from a set of predefined
processes.

* Wherein the two classes also indicates which of the two cores the process has
been executed on.

On a high-level

* Execute simultaneous processes on separate cores

* Power consumption of device measured using
single probe

* Use encoder to create latent representation
* Create concept of “left” and “right” measurement
* Classify respective side

* Give classification as input to anomaly detector
[out of scope]

Setup — High-level

Left
measurement

Left Classifier

Measurement Encoder Decoupler

Right

Right Classifier
measurement

FPGA |

First SW

Side-channel

probe

Second SW

Setup — Machine learning models

* Four blocks:

* Pretrained encoder

* Separately trained, produce well-suited latent representation of
side-channel-trace

* Decoupler

* Divide the encoded trace into a left and right block
* Cross-attention

* Mix attention of the left and right block
* Classifier

* Determine and output two classes, one for left and one for right
processor.

Setup — Pre-training encoder

\'tf
encoder

Exponential

moving average

)
Student ‘\\ ‘\ Pretraining
o :D :D encoder ::) \L predictor
= | —
%)
d Student N i
o E:i) E::> E::> N Pretraining
% W MWW ﬂ encoder \L predictor
g
=
Student :>\\ ‘\ Pretraining
:> :D encoder predictor
v

Setup — Machine learning models

[Jm”,'} M ”“"ﬂl'l“ by
JL‘\M w”mhi "'h'"i} \w J'.'H Il

‘ —_—
Right single I — <
processortraces iyl L) | Encoder | = —

Wl i “MM!.W.’JM i

Right processor mean
single trace db

Left

Decoupler

A s
Left Left

Cross-attention) . Classifier

v

WY = (=

Right

Decoupler

Dual core dual
process trace

7

Right Right

rd \~ 1
,/, \\\\ . .
Cross—attentionJ Classifier
"

p

le.l\IJM,l\I\lhIWMUJ‘ '\W Jl'L\
wl.u ‘l.\‘”,l“Ul“ \me ‘IW\‘“

Left single ll.'lw|L|5'||I\{|i{IJI\lW{I“IJ‘I’\IhJIJIQIJ |:> - .
n r , >
I] I _.. _b

ww %n1.\nf~\'!J.\’4.l:t.‘*1}&1‘@'\\'4,»1.\l,,u,u.um

Left processor mean
single trace db

Setup — Attention heads

* Decoupler has one attention head per known process (class)
* Supervised
* Learns specific traits for process and class

* Cross-attention has additional attention heads
* Unsupervised
* Learns specific dual-core properties

Measurement setup

* Monitor
* Chipwhisperer Husky + HP Elitebook
850 G8
* Device-under-monitoring
« CW305 A100 - Artix-7 FPGA
* Pre-soldered resistive shunt on VCC

* Synchronous monitoring
* 4 samples/clock cycle

Measurement setup (cont.)

* Two soft Cortex-M3 cores, C,
and Cy

* Clock speed of 20 MHz
* Separate BRAM blocks
* Clock generated by monitor

|
Ll

* Measurement trigger
* Wire triggered from C,

Ji L Al
2

i
]
N
] lg
i i
PR

L_C __

1l

Scope limitations

* Simple software

* Evaluated using software from BEEBS*
* Software without branches, interrupts or varying input

* Process synchronization
 Simultaneous start of processes

* “Fresh” processor
* Processors in reset prior to measurement

* Deterministic processors
* No branch-prediction or speculative execution

* Bristol/ Embecosm Embedded Benchmark Suite (https://github.com/mageec/beebs)

Evaluation

* Eleven classes
* Ten software processes + one category of “no process”

* ~1000 samples of 4500 clock cycles per class combination
* 70% used for training

* 10% for validation

* 20% as held-out independent test set

Results

* Five-fold validation

* Average dual correctness -
94,1%
* Worst process —85,4%

* Average single correctness —
97%

* Worst process -92,7%

TABLE 1. DUAL-CORE CLASSIFICATION ACCURACY LISTED BY THE CLASS
OF THE PROCESS RUNNING ON C 4.

C4 class Accuracy Single acc. # Test| # Valid| # Train
cnt 96.1%+09 | 98.0% £0.5 2200 1100 7700
fasta 91.1% £ 1.1 | 95.6% £0.5 2000 1000 7000
prime 97.5% 0.4 | 98.8% £0.2 2200 1100 7700
ahacompress | 95.8% +4.8 | 97.9% +2.4 2200 1100 7700
bubblesort 973% 4.2 | 98.6% £2.1 2200 1100 7700
cover 98.2% 4.1 | 99.1% £2.0 2200 1100 7700
tarai 91.9% +2.0 | 959% £ 1.0 2200 1100 7700
lednum 96.3% 3.6 | 98.2% £ 1.8 2200 1100 7700
crc32 854% +£3.6 | 92.7% + 1.8 2200 1100 7700
statemate 96.4% 5.0 | 98.2% £2.5 2200 1100 7700
idle® 88.5% £ 5.0 | 942% 2.5 2200 1100 7700
Total 94.1% +2.2 | 97.0% + 1.1 | 24000| 12000| 84000

“No process currently executing on C 4.

Measurements illustrated

0.5 A

0.0 A

—0.5 -

0.5 A

0.0 A

—0.5 -

0.5 A

0.0 A

-0.5 A , |

0 2500 5000 7500 10000 12500 15000 17500

. Fasta + Bubblesort . Fasta . Bubblesort - Statemate

Discussion

* Results indicate that dual processes monitoring is feasible
* Latent representation is key.
 Can we represent more complex software behavior?

* Oversampling
* Often not feasible in real-world settings.
* How would it impact result if we go below Nyquist threshold?

* Processor optimizations
* Not only software but also processor behavior must be monitored.
* Can we learn to identify hardware optimization patterns?

Next steps and interesting research directions

* End-to-end anomaly detection
* Select golden sample from classifier output

* More than two processors
* What is the noise limit?

* Single process on multiple cores

* What can we represent in latent space”?

* We must evaluate whether we efficiently can determine (or filter out)
* Hardware optimizations
e QOut-of-order execution
* Software branches
* Combine with prior work on side-channels & control flow graphs

	Default Section
	Slide 1
	Slide 2: Side-channels – in a nutshell
	Slide 3: Extracting physical side-channels
	Slide 4: Side-channel monitoring
	Slide 5: Multi-process side-channel monitoring
	Slide 6: Multi-process side-channel monitoring
	Slide 7: Research questions
	Slide 8
	Slide 9: Our contributions
	Slide 10: On a high-level
	Slide 11: Setup – High-level
	Slide 12: Setup – Machine learning models
	Slide 13: Setup – Pre-training encoder
	Slide 14: Setup – Machine learning models
	Slide 15: Setup – Attention heads
	Slide 16
	Slide 17: Measurement setup
	Slide 18: Measurement setup (cont.)
	Slide 19: Scope limitations
	Slide 20: Evaluation
	Slide 21: Results
	Slide 22: Measurements illustrated
	Slide 23
	Slide 24: Discussion
	Slide 25: Next steps and interesting research directions
	Slide 26
	Slide 27

