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Introduction

What’s Scientific Computing after all?

“Numerical analysis is concerned with the design and
analysis of algorithms for solving mathematical problems
that arise in many fields, especially science and
engineering. For this reason, numerical analysis has
more recently also become known as scientific
computing. Scientific computing is distinguished from
most other parts of computer science in that it deals with
quantities that are continuous, as opposed to discrete.”
[Heath, 2018]
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Introduction

Learning Scientific Computing is challenging!!

▶ Research → aimed at predicting which students are
at risk of failing these
courses [Caicedo-Castro et al., 2023,
Caicedo-Castro, 2023, Caicedo-Castro, 2024b,
Caicedo-Castro, 2024a]

▶ mathematics
▶ programming skills, and
▶ knowledge of science (e.g., physics) for application

purposes
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Introduction

Studying the factors influencing the learning of
mathematics has been a subject of interest in prior
research:
▶ Basic educational levels [Ayebale et al., 2020,

Gómez-García et al., 2020,
Trujillo-Torres et al., 2020, Maamin et al., 2022]

▶ Higher education [Brezavšček et al., 2020,
Martinez-Villarraga et al., 2021, Park et al., 2023,
Batista-Toledo and Gavilan, 2023,
Charalambides et al., 2023]

▶ Doctoral levels [Wijaya et al., 2023]
▶ Colombia → algebra courses (engineering

curricula) [Martinez-Villarraga et al., 2021]
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Introduction

Problem → g(xi) ≈ yi = k
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Introduction

Problem → g(xi) ≈ yi = k , where k = 1, . . . ,10

g : X → Y =⇒ P(yi = k) =
∫
X P(g(xi) = k |xi)P(xi)dxi
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Collecting and Preprocessing the Dataset

How did we collect the dataset

▶ Population sample: 117 engineering students
enrolled in scientific computing courses in 2024

▶ Courses: numerical methods and nonlinear
programming

▶ 15 independent variables (1 to 5) →15 out of 27
factors that determine motivation - some from prior
research [Batista-Toledo and Gavilan, 2023,
Charalambides et al., 2023]

▶ Target variable → motivation level (1 to 10)
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Collecting and Preprocessing the Dataset

We chose (F-test) independent variables such as
(p-value < 0.05):

▶ The extent to which the student has enjoyed the
course

▶ The extent to which the student would like to
recommend the course to other peers

▶ The extent to which the student perceives the
university has up-to-date equipment

▶ The extent to which the course has been encouraged
students to study with classmates
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Collecting and Preprocessing the Dataset

We didn’t (F-test) select factors such as
(p-value ≥ 0.05):

▶ The student’s average grade in previous mathematics
courses

▶ The extent to which the student considers it
imperative to study the course

▶ The extent to which the student considers it
imperative to study mathematics courses

▶ The extent to which the student considers it wrong
not to study the course
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Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student

▶ Where the j th component xij → j th input variable
associated with a specific factor

▶ D = 15
▶ yi ∈ Y ⊂ R → i th student’s course motivation level
▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =

{(xi , yi)}N
i=1

▶ N = 117
▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D
▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



17/55- 1

Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student
▶ Where the j th component xij → j th input variable

associated with a specific factor

▶ D = 15
▶ yi ∈ Y ⊂ R → i th student’s course motivation level
▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =

{(xi , yi)}N
i=1

▶ N = 117
▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D
▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



17/55- 1

Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student
▶ Where the j th component xij → j th input variable

associated with a specific factor
▶ D = 15

▶ yi ∈ Y ⊂ R → i th student’s course motivation level
▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =

{(xi , yi)}N
i=1

▶ N = 117
▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D
▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



17/55- 1

Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student
▶ Where the j th component xij → j th input variable

associated with a specific factor
▶ D = 15
▶ yi ∈ Y ⊂ R → i th student’s course motivation level

▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =
{(xi , yi)}N

i=1

▶ N = 117
▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D
▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



17/55- 1

Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student
▶ Where the j th component xij → j th input variable

associated with a specific factor
▶ D = 15
▶ yi ∈ Y ⊂ R → i th student’s course motivation level
▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =

{(xi , yi)}N
i=1

▶ N = 117
▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D
▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



17/55- 1

Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student
▶ Where the j th component xij → j th input variable

associated with a specific factor
▶ D = 15
▶ yi ∈ Y ⊂ R → i th student’s course motivation level
▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =

{(xi , yi)}N
i=1

▶ N = 117

▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D
▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



17/55- 1

Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student
▶ Where the j th component xij → j th input variable

associated with a specific factor
▶ D = 15
▶ yi ∈ Y ⊂ R → i th student’s course motivation level
▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =

{(xi , yi)}N
i=1

▶ N = 117
▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D
▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



17/55- 1

Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student
▶ Where the j th component xij → j th input variable

associated with a specific factor
▶ D = 15
▶ yi ∈ Y ⊂ R → i th student’s course motivation level
▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =

{(xi , yi)}N
i=1

▶ N = 117
▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D

▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



17/55- 1

Collecting and Preprocessing the Dataset

Mathematical notation:

▶ xi ∈ X ⊂ RD → i th student
▶ Where the j th component xij → j th input variable

associated with a specific factor
▶ D = 15
▶ yi ∈ Y ⊂ R → i th student’s course motivation level
▶ D = {(xi , yi) | xi ∈ X ∧ yi ∈ Y , i = 1, . . . ,N} =

{(xi , yi)}N
i=1

▶ N = 117
▶ X = X1 × X2 × · · · × Xj × · · · × XD

▶ Xj = {a ∈ N |1 ≤ a ≤ 5}, for j = 1, . . . ,D
▶ Y = {a ∈ N |1 ≤ a ≤ 10}

17 / 55



18/55- 1

Collecting and Preprocessing the Dataset

18 / 55



19/55- 1

Agenda

Introduction

Collecting and Preprocessing the Dataset

Finding the Functional Relation Among Variables

Calculating the Probability of Each Motivation Level

Reducing the Dimensionality of the Input Space

Results and Discussion

Conclusion and Future Work

Question and Answer Session

19 / 55



20/55- 1

Finding the Functional Relation

Problem definition:

▶ Find the function g

▶ the dataset D
▶ g(xi) ≈ yi

▶ g : X → Y
▶ g(xi) = w0 + w1xi1 + w2xi2 + · · ·+ wDxiD = wT x̂i

▶ x̂i0 = 1, whereas x̂ij = xij for j = 1, . . . ,D
▶ w ∈ RD+1

▶ minw f (w) = ||Xw − y ||2 + λ||w ||2

▶ Xij = 1 if j = 1, and Xij = x̂i,j−1 for j = 2, . . . ,D + 1
▶ w = (X T X + λI)−1X T y
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Finding the Functional Relation

Problem definition:

▶ Find the function g
▶ the dataset D
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Probability of Each Motivation Level

We adopted the Monte Carlo numerical
method [Metropolis and Ulam, 1949]

▶ P(yi = k) ≈ P(g(xi) = k)

▶ P(g(xi) = k) =
∫
X P(g(xi) = k | xi)P(xi)dxi

▶ P(xi) is the probability density function of the input
variables

▶ xij ∼ U(1,5) for j = 1, . . . ,D
▶ P(yi = k) ≈ P(g(xi) = k) ≈ 1

N

∑N
i=1 1(g(xi) = k)

▶ N is the number of vectors xi

▶ 1(u) = 1 if u is true, and 1(u) = 0 otherwise
▶ N is not the size of the dataset
▶ SE = σ√

N
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Reducing the Dimensionality

We adopted Principal Component Analysis [Bishop, 2006]

▶ zi1 = uT
1 xi , uT

1 u1 = 1

▶ var(zi1) = uT
1 Su1

▶ S ∈ RD×D

▶ S = 1
N

∑N
i=1(xi − x̄)(xi − x̄)T

▶ maxu1 J(u1) = uT
1 Su1 − λ1(uT

1 u1 − 1)
▶ λ1 = uT

1 Su1 = var(zi1)
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Reducing the Dimensionality

We adopted Principal Component Analysis [Bishop, 2006]

▶ zi2 = uT
2 xi , uT

2 u2 = 1, and uT
2 u1 = 0

▶ var(zi2) = uT
2 Su2

▶ maxu2 J(u2) = uT
2 Su2 − λ2(uT

2 u2 − 1)− αuT
2 u1

▶ λ2 = uT
2 Su2 = var(zi2)

▶ Calculate all basis vectors uj for j = 1, . . . ,D,
▶ Producing d principal components, where d < D
▶ Resulting the transformed vector zi ∈ Rd

▶ ρ = 100 ·
∑d

j=1 λj∑D
k=1 λk

%
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Results and Discussion

g(xi) = 0.0220 + 0.1678xi,1 + 0.1751xi,2 + 0.1992xi,3 + . . .

· · ·+ 0.1989xi,4 + 0.1018xi,5 + 0.1111xi,6 + . . .

· · ·+ 0.1592xi,7 + 0.1157xi,8 + 0.1597xi,9 + . . .

· · ·+ 0.1557xi,10 + 0.1765xi,11 + . . .

· · ·+ 0.0895xi,12 − 0.0049xi,13 + . . .

· · ·+ 0.0744xi,14 + 0.0749xi,15

(1)

▶ The i th student’s satisfaction (xi,4) with the scientific
computing course

▶ The i th student’s enjoyment (xi,3) with the scientific
computing course
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(1)

A negative weight for xi,13 indicates that students who
perceive mathematics courses as more useful for their
careers tend to have slightly lower motivation levels in
scientific computing courses

▶ The i th student’s satisfaction (xi,4) with the scientific
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Results and Discussion

▶ Coefficient of determination (R2): 0.37

▶ root-mean-squared-error: 1.62
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Results and Discussion

▶ The most probable level according to the Monte Carlo
method is 4.908 with a standard error of 6.8 × 10−4

▶ This outcome was obtained with 95% confidence
(alpha = 0.05), within the interval (4.90, 4.91)

▶ We performed rounding to the nearest even number
for halfway cases
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Results and Discussion

Probability of Every Motivation Level Calculated with the
Monte Carlo Method

Level Probability
1 P(y = 1.0) = 5.49 × 10−4%
2 P(y = 2.0) = 1.34 × 10−1%
3 P(y = 3.0) = 4.17%
4 P(y = 4.0) = 26.86%
5 P(y = 5.0) = 45.03%
6 P(y = 6.0) = 21.21%
7 P(y = 7.0) = 2.55%
8 P(y = 8.0) = 5.57 × 10−2%
9 P(y = 9.0) = 6.10 × 10−5%
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Results and Discussion

31 / 55



32/55- 1

Results and Discussion

Probability of Every Motivation Level Calculated with the
Monte Carlo Method from the Best Simulation Setting

Level Probability
6 P(y = 6.0) = 2.5 × 10−1%
7 P(y = 7.0) = 36.98%
8 P(y = 8.0) = 61.03%
9 P(y = 9.0) = 1.74%
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Results and Discussion
xij ∼ U(3,5) for 1 ≤ j ≤ 12 – xi,12 = 0 –
xij ∼ U(1,5) for j = 13,14
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Results and Discussion

▶ The most probable level according to the Monte Carlo
method is 7.642 with a standard error of 8.1 × 10−4

▶ This outcome was obtained with 95% confidence
(alpha = 0.05), within the interval (7.641, 7.643)

▶ We performed rounding to the nearest even number
for halfway cases
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Results and Discussion
Variance Retained by the Principal Components 1/2

Number of Principal Components Retained Variance (%)
1 44.84%
2 55.43%
3 64.22%
4 71.16%
5 76.19%
6 80.51%
7 84.30%
8 87.74%
9 90.69%
10 92.92%
11 94.77%
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Results and Discussion

Variance Retained by the Principal Components 2/2

Number of Principal Components Retained Variance (%)
12 96.50%
13 97.99%
14 99.15%
15 100.00%
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Results and Discussion

Regression applied on a two-dimensional space
▶ Coefficient of determination (R2): 0.33

▶ root-mean-squared-error: 1.67
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Results and Discussion

▶ The most probable level according to the Monte Carlo
method is 3.84 with a standard error of 1.46 × 10−3

▶ This outcome is within (3.83, 3.84) with a 95% (alpha
= 0.05) confidence interval.

▶ We performed rounding to the nearest even number
for halfway cases
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Results and Discussion

Probability of Every Motivation Level Calculated with the
Monte Carlo Method Taking into Account Two Principal
Components

Level Probability
1 P(y = 1.0) = 13.62%
2 P(y = 2.0) = 15.61%
3 P(y = 3.0) = 15.64%
4 P(y = 4.0) = 15.59%
5 P(y = 5.0) = 15.62%
6 P(y = 6.0) = 15.59%
7 P(y = 7.0) = 8.32%
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Results and Discussion

Visualization of the latent factors derived from the
regression model. The contour lines show the lower
probability of obtaining the higher motivation levels.
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Conclusion and Future Work

▶ We found that engineering students enrolled in
scientific computing courses at the University of
Córdoba exhibit a moderate level of motivation.

▶ This suggests that these students find it challenging
to grasp the concepts, foundations, and methods
taught in these courses

▶ It is essential for lecturers to develop effective
motivation strategies tailored to the unique
challenges of scientific computing courses
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▶ Expanding the dataset to include students from other
universities or fields of study could provide a more
comprehensive understanding of the factors
influencing student motivation.

▶ We’ll explore nonlinear regression models such as
Gaussian processes, Kernel Ridge Regression, and
Random Forests, which might uncover more nuanced
relationships between the variables

▶ We’ll also evaluate alternative models for
dimensionality reduction
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The end

That’s all folks

Now starts the Q ’n’ A session

Praise the name of God forever and ever, for he has
all wisdom and power. He controls the course of

world events; he removes kings and sets up other
kings. He gives wisdom to the wise and knowledge to

the scholars. He reveals deep and mysterious
things... (Daniel 2:20-22)
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