

PANEL #3

Theme Challenges of Ubiquitous Sensing Systems

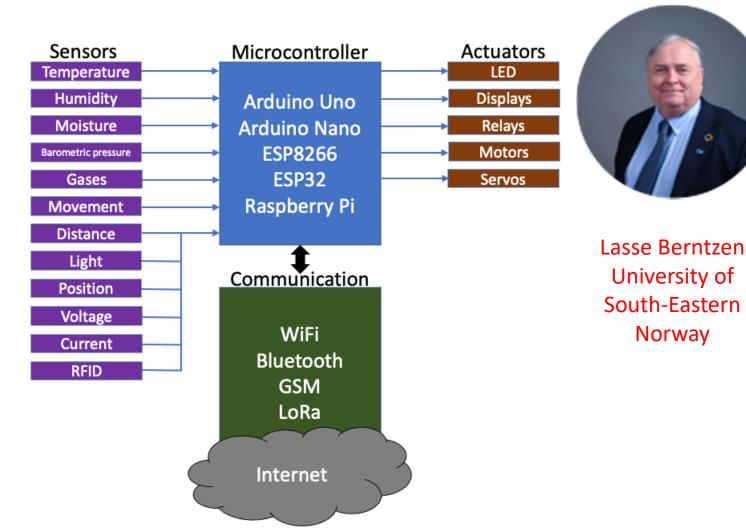
NexComm 2025 & DigitalWorld 2025

PANEL #3

Moderator

Prof. Dr. Lasse Berntzen, University of South-Eastern Norway, Norway

Panelists


Prof Dr. Przemyslaw Pochec, University of New Brunswick, Canada Dr. Roger Tilley, Sandia National Laboratories, USA Prof Dr. Mohamed El-Darieby, Ontario Tech University, Canada Prof. Dr. Paulo Cruvinel, Embrapa, Brazil

Moderators Opening Remark

NICE MAY 2025

A sensing system is a configuration of sensors, communication infrastructure, and processing units designed to detect, measure, and interpret environmental or system variables (e.g., temperature, motion, pollution, location, energy use).

Moderators Opening Remark

NICE MAY 2025

A ubiquitous sensing system refers to a network of sensors integrated seamlessly into the environment, continuously collecting data across space and time, often invisible to users, supporting real-time or contextual decisions.

Examples:

- Smart cities
- Smart energy
- Smart parking

Lasse Berntzen
University of
South-Eastern
Norway

NICE MAY 2025

UBIQUITOUS SENSING SYSTEMS (+ applications)

- Ubiquitous prevalence, energy efficiency, cost efficiency
- Sensing direct measure, indirect measure
- Systems collection, (pre)processing, aggregation, transmission, storage, presentation
- + Applications domain specific, inferential

Przemyslaw Pochec
Faculty of Computer
Science
University of New
Brunswick
Canada

NICE MAY 2025

CHALLENGES

- Reported in literature (according to Grok): privacy, security, energy efficiency, interoperability
- Cost: manufacturing, maintenance (incl. power), disposal
- ➤ Volume of data: (pre)processing, storage, transmission (my own work: mobile medium)
- ➤ Processing (aka "applications") inference, planning, recommendations, conscious thinking ...
- >... and most of all: Social Acceptability and regulatory approval!

Przemyslaw Pochec
Faculty of Computer
Science
University of New
Brunswick
Canada

NICE MAY 2025

Challenges of Ubiquitous Sensing Systems

Data Interoperability

- Being able to make use of devices made by different manufacturers with nonstandard communication protocols
- How is the data retrieved? Does it need to be retrieved from a cloud system?
- Are some Sensing Systems AI Monitored? If So, How do we integrate them?

Data Collection Problem –

- Data too sparse in time and space to provide for better information content for modeling critical phenomena.
- Data is too regular in frequency and the content does not cover adequately critical events.
- Communication in harsh environments

Roger Tilley
Sandia National
Laboratories

NICE MAY 2025

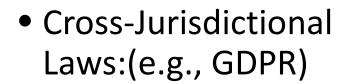
Challenges of Ubiquitous Sensing Systems

- Data Quality and Processing—
 - Is there a Need to process data in real time?
 - Noisy data can be difficult to analyze and interpret.
 - Non-Uniform Sample sizes can hamper analysis and decision making.
 - There may be a need to develop adaptive sampling techniques to increase the quality of collected data.

Sensor Design and Deployment –

- For the desired collection area, is it covered adequately?
- Planning for sensor system use can be challenging (complicated) based on the types of systems intended for use.
- How does one integrate the sensors in the system?
- Are the Systems designed for scalability (up or down)?
- Cost and energy consumption must be considered.
- Reliability and durability in harsh environments must also be considered.

Roger Tilley
Sandia National
Laboratories



NICE MAY 2025

More Challenges

- SecurityVulnerabilities &Privacy Concerns
- Ethical Governance

- Regulatory and Compliance Issues
- StandardizationGaps

Resource Constraints

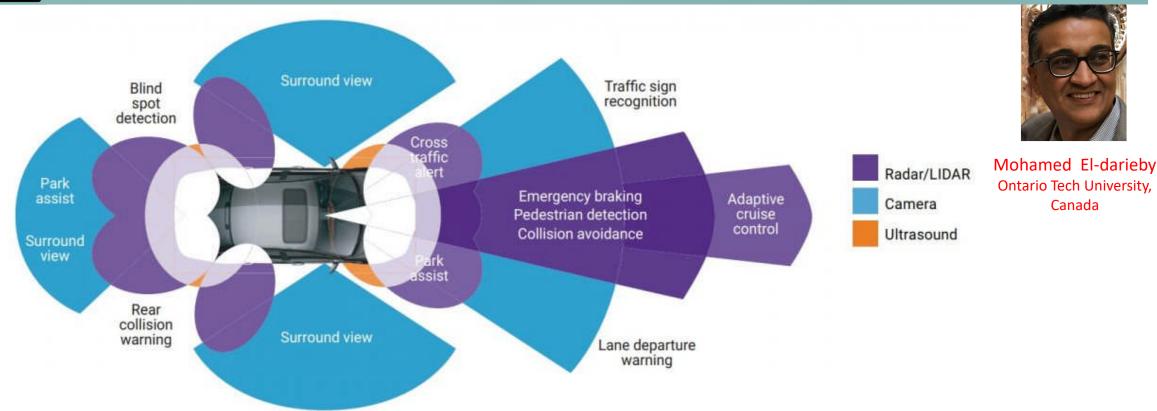
Mohamed El-darieby
Ontario Tech University,
Canada

Data

NICE MAY 2025

Enrichment / Interpretation

Mohamed El-darieby
Ontario Tech University,
Canada


- Contextual
 - Sensor Fusion
 - Better modeling of environment

- Semantics
 - Vocabulary augmentation
 - Ontological
 - Knowledge Graphs

Explainability

NICE MAY 2025

https://www.researchgate.net/figure/Sensors-in-Vehicle-collision-avoidance-system fig2 358821552

Sensor Data Fusion: Spatial-Temporal Attentive

NICE MAY 2025

ΑI

- can mimic creativity
- Can solve problem
- Explainability
- Symbol Grounding Problem
 - Al manipulates symbols (e.g., words, pixels) without connecting them to real-world referents.

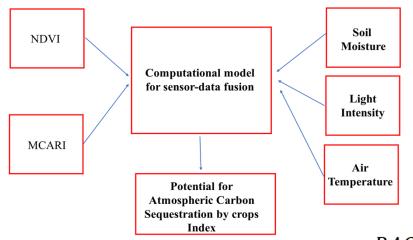
- AI "knows" by identifying correlations in data
 - a complex function
 - computational entities
- not through
 - understanding
 - reasoning.

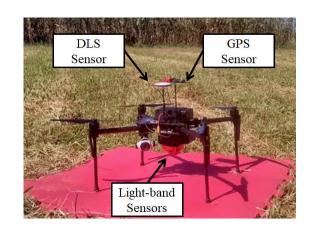
- Illusion of Agency
- emergent
 properties** of
 optimization, not
 true agency.
- no consciousness, desires, or selfawareness

Mohamed El-darieby
Ontario Tech University,

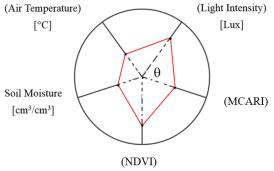
NICE MAY 2025

UBIQUITOUS COMPUTING AND SENSING SYSTEMS IN AGRICULTURE


- ✓ Ubiquitous sensing systems involve a network of sensors distributed throughout an environment to collect real-time data and information.
- ✓ Pervasive computing, also known as ubiquitous computing, is the concept of embedding computing capabilities into everyday objects, making them accessible from anywhere and anytime.
- ✓ Systems are designed to be low-power, readily, available and accessible, enabling the integration of intelligence and connectivity.



Paulo E. Cruvinel
Embrapa Instrumentation
Federal University of São
Carlos (UFSCar)
Brazil
paulo.cruvinel@embrapa.br


NICE MAY 2025

overlap side (Air Temp

PACSI $\triangleq g \begin{pmatrix} Light\ Intensity, Air\ Temperature, \\ Soil\ Moisture, NDVI, MCARI \end{pmatrix}$

Source: Cruvinel & Colnago, 2025

Paulo E. Cruvinel
Embrapa Instrumentation
Federal University of São
Carlos (UFSCar)
Brazil
paulo.cruvinel@embrapa.br

Moderators Closing Remarks

NICE MAY 2025

Challenges

- Sensor quality and reliability
- Need for calibration
- Example: MQ2 gas sensor
- Software can handle sensors with range problems

Lasse Berntzen
University of
South-Eastern
Norway

THE STAGE IS YOURS