
Open Discussion #5 NICE
MAY 2025

1

Theme
From Agentic Framework to AI-based

Artificial Engineer

NexComm 2025 & DigitalWorld 2025

Open Discussion #5 NICE
MAY 2025

2

Ignitor
Prof. Dr. Petre Dini, IARIA, USA/EU

Driver
Prof. Dr. Mohamed El-Darieby, Ontario

Tech University, Canada

AI, AI, AI, … NICE
MAY 2025

3

AI landscape; Allover AI or AI where is needed?

The changing landscape of data and AI

The complexity of AI & bigdata technologies?

Leveraging data and insights

Building a data-driven culture?

Enhancing decision-making with AI

Rapid technological advancements & changes?

Navigating the AI ecosystem: How cohesive these AI efforts are?

Overall resource allocation and skill gaps challenges

Mechanic engineer vs AI engineer

Themes under discussion NICE
MAY 2025

4

Tools for AI engineers

AI-engineer domains

AI pipe engineering stack

LLM-specific engineering stack
Real-world LLM use case

AI agents

Agentic engineering

AI vs Agentic Engineering

Goals and Intent

Conflicting goals and conflict mediation

Q: Formalisms

Tools for AI-engineers NICE
MAY 2025

5

Tools for AI engineers

Designing machine learning and deep learning models

• Managing data pipelines and preprocessing

• Deploying models into production environments

• Monitoring model performance and updating models

• Ensuring compliance, explainability, and robustness

1. Model Development Tools
Tool || Purpose
> TensorFlow, PyTorch || Core deep learning frameworks
> scikit-learn || Classic ML algorithms & pipelines
> Keras || High-level neural network API
> Hugging Face Transformers || Pretrained LLMs and NLP models

2. Data Engineering Tools
> Apache Airflow || Workflow orchestration
> Pandas / Dask ||Data manipulation and parallel processing
Expectations: Data quality and validation checks

3. Model Deployment & Serving
> TensorFlow Serving / TorchServe || Serving models as APIs
> ONNX Runtime|| Cross-platform model inference
> MLflow / Seldon Core / BentoML || Model tracking, packaging, deployment

4. Monitoring and Observability
> WhyLabs / Evidently AI || Monitor drift and model quality
> Prometheus + Grafana || Infrastructure metrics and dashboards
> Arize AI / Fiddler AI || ML model observability and bias detection

5. MLOps and Versioning
> DVC (Data Version Control) || Track datasets and experiments
> Weights & Biases / Comet.ml || Track experiments, compare results
> Kubeflow / MLflow Pipelines || End-to-end ML workflows

6. AutoML and No-code AI
> Google AutoML / Azure ML Studio || Automated ML workflows
> DataRobot / H2O.ai || Business-friendly model training
> RunwayML / MakeML || Visual AI tools for creative work

7. Security, Fairness, and Explainability
> IBM AI Fairness 360 / Aequitas || Bias detection and mitigation
> LIME / SHAP || Model interpretability
> Adversarial Robustness Toolbox (ART) || Security testing for ML models

AI-Engineer Domains NICE
MAY 2025

6

Who Uses These Tools?

AI/ML Engineers – for full-cycle model development and deployment

Data Engineers – for data pipelines, ingestion, and preprocessing

MLOps Specialists – for CI/CD, versioning, and monitoring (Continuous Integration/Continuous Development)

Domain Experts – for interacting via AutoML and low-code/no-code tools

(i) Typical AI Pipeline Stack: General AI Engineering Projects
This refers to end-to-end workflows commonly used in ML/AI
applications such as image classification, predictive analytics,
recommendation systems, etc

(ii) LLM-Specific Engineering Stack: Tools & Real-World Combos
This focuses on projects involving Large Language Models
(LLMs) such as GPT-4, LLaMA, Claude, etc., especially for
chatbots, retrieval-augmented generation (RAG),
summarization, agents, and more.

(iii) Example: Real-World LLM Use Case – Legal
Document Search Assistant

Typical AI Pipeline Stack NICE
MAY 2025

7

LLM-Specific Engineering Stack NICE
MAY 2025

8

Real-World LLM Use Case NICE
MAY 2025

9

Use Case: Summarize, retrieve, and answer questions about legal documents.

Tools Used:
LlamaIndex: To build a document index from legal PDFs
OpenAI Embeddings + Pinecone: For storing and retrieving vectorized data
LangChain ͗ �&Žƌ�ĐŚĂŝŶŝŶŐ�ƵƐĞƌ�ƋƵĞƌŝĞƐ�ї �ĞŵďĞĚĚŝŶŐ�ƐĞĂƌĐŚ�ї �>>D �ŐĞŶĞƌĂƟŽŶ
Streamlit: For building the interactive UI
FastAPI + Redis: For backend API and session memory
LangSmith: For tracking prompt chains and debugging output quality

AI Engineer (Agent) - Virtual Entity NICE
MAY 2025

10

Capability Description
⭰ Model Architecting Selects models based on data type (e.g., CNNs, LLMs, GNNs)
⦁ Hyperparameter Tuning Uses optimization techniques (Bayesian, Grid Search)
⚙ Pipeline Automation Builds end-to-end data/model training
workflows
൩ Deployment Automation Pushes models into staging or production environments
⧾ Documentation & Reporting Auto-generates experiment reports, code comments
ၦ Continual Learning Mgmt Suggests or implements retraining schedules
⡇ Debugging Assistant Identifies performance regressions, training bugs
ࠢ Bias and Compliance Checks Flags fairness, privacy, or explainability issues

Core Capabilities of a Virtual "AI Engineer" Examples of Platforms Creating "AI
Engineer" Entities
> Devin by Cognition
A fully autonomous AI software engineer that can
plan, write, debug, and test code with no human
intervention (still in preview
> GitHub Copilot X (with Agents)
Goes beyond code completion; can scaffold apps,
generate entire classes, and collaborate over time.
> AutoGPT / AgentGPT
Experimental open-source agents that can be
instructed to achieve high-level engineering goals via
tool use and iterative planning.
> OpenDevin (open-source fork)
Tries to mimic Devin's architecture — acts like a
terminal-based AI engineer that uses planning + code
execution.
> C> odeWhisperer (AWS) and Tabnine
Autocomplete-style assistants but heading toward
semi-autonomous behavior.
> LangChain Agents / CrewAI
Build modular agent teams: one can play the "AI
engineer" role in an LLM-powered workflow.

Underlying Technologies
> ⎎ LLMs | GPT-4, Claude, Mistral, or open-source models (fine-tuned for
engineering tasks)
> փ Agent Frameworks | LangChain, AutoGen, CrewAI, AgentVerse
> Tool Plugins | Code runners, databases, version control, Docker, etc.
> ⚙ Memory/Planning | ReAct, Chain-of-Thought, RAG, scratchpads,

vector memory
> ധ Environment | Often containerized (Docker, Replit, VSCode in-browser)

Agentic Engineering NICE
MAY 2025

11

An "AI Engineer" as a virtual agent (an autonomous LLM-based entity that performs AI engineering tasks),
Agentic Engineering as a discipline or paradigm (engineering systems of agents that plan, act, and learn over time).

AI Engineer (as a virtual agent)
This is a specialized role or embodied skillset within a broader system.
It refers to an LLM-powered autonomous agent that:
- Writes code, designs models, debugs, deploys
- Acts like a virtual software engineer
- Is task-focused (e.g., “build me an object detector”)
- May use planning, tool use, memory, and execution environments (e.g., shell, browser, Python interpreter)
Example:

Devin, GitHub Copilot + agents, or a LangChain/CrewAI agent with the "AI Engineer" role.

Agentic Engineering
This is a new field of engineering focused on the design, orchestration, and
safety of intelligent agents, especially LLM-based ones.
It involves:
- Creating multi-agent ecosystems
- Managing goals, delegation, planning, negotiation
- Enforcing safety, alignment, and controllability
- Addressing non-determinism, long-horizon actions, and memory evolution

Related challenges include:

- Tool integration
- Agent teaming and
coordination
- Goal disambiguation and

intent refinement
- Autonomy vs. oversight
balancing
- Temporal abstraction (short
tasks vs. lifelong learning)

AI vs Agentic Engineering NICE
MAY 2025

12

Their Relationship
Aspect || AI Engineer (Agent) || Agentic Engineering

> ⟐ What || A software agent that performs AI tasks || A discipline to build, manage, and evaluate agents
> ⎎ Cognitive Role || Acts as a specialized skill worker || Designs systems of cognition and delegation
> ⦳ Technologies Used || LLMs, memory, RAG, tool APIs || Agent platforms, safety modules, coordination logic
> ᢆ Output || Trained models, deployed pipelines || Robust multi-agent systems, reliable interfaces
> ၲ Scope || One agent with a fixed or growing role || Multi-agent environments, emergent behaviors
> ⨊ Example || Devin generating a neural net || CrewAI orchestrating 5 agents for research

What Is Goal Generation in Agentic Systems?
Goal generation is the process by which an agent (like the AI
Engineer) determines what it should do next. This includes:
> Recognizing new needs or opportunities
> Transforming open-ended tasks into actionable objectives
> Aligning tasks with long-term system purpose or constraints

1. Components of Goal Generation
Source || Example
⌜ Human Prompt || “Build a model to classify pneumonia in X-ray images”
⎎ Self-reflection || Agent detects pipeline drift and sets a goal to retrain
➘ Environment State || New data availability triggers model update
ၲ Upstream Agent || A supervisor agent delegates “optimize hyperparameters”

Basis: Goals NICE
MAY 2025

13

2. Cognitive Mechanisms Involved
Mechanism || Role

Intent Interpretation | Parsing vague instructions into well-scoped tasks
⨊ Decomposition || Breaking goals into sub-goals or tasks (e.g., Chain-of-Thought)
⦎ Prioritization & Relevance Filtering || Choosing which goals to pursue first
ජ Goal Memory and Reuse || Recall past goals and outcomes for reuse or adjustment
ᝧ Dynamic Adaptation || Modify goals in response to failures, new input, or success

3. Formal Representations of Goals
Goals can be represented internally as:
> Structured Task Objects: {"type": "train_model", "dataset": "lungXrays", "metric": "accuracy"}
> Planning Nodes in a hierarchy or workflow graph
> Natural Language Targets with semantic frames (via LLM embeddings)

4. Techniques Used for Goal Generation in Modern Systems
Technique || Use Case
> ⎎ LLM-based reasoning (e.g., ReAct, Plan-and-Act) || Converts vague goals into sequenced actions
> ៎ Prompt templating + examples || Guides goal shaping via few-shot prompting
> ᦊ Planning agents (e.g., BabyAGI, AutoGPT) || Create and schedule subgoals dynamically
> փ Graph-based Planning (RAG + Tools) || Connect facts to derive new tasks
> ቶ Goal negotiation || Collaborating with other agents to clarify or redefine goals

Open Research Challenges

✍ Ambiguity Resolution -
Understanding under-specified
goals
ࠢ Alignment & Ethics =
Generating goals aligned with
user intent and safety
constraints
⏱ Long-Horizon Goals
Managing goals that take
days/weeks to complete
Ḃ Interruptibility
Being able to stop, modify, or
reprioritize goals mid-flight
⎎ Meta-goals
Agents improving their own
goal-setting heuristics

Basis: Goals-Intent NICE
MAY 2025

14

1. Formal representation
Let each goal G be represented as a structured tuple:
G=⟨ID,Intent,InputContext,Constraints,SuccessCriteria,Priority⟩
ID: Unique goal identifier
Intent: Natural language or formal description
InputContext: Set of facts, data, or triggers
Constraints: Temporal, logical, resource, or ethical boundaries
SuccessCriteria: Quantified metrics, logical end states
Priority: Ranking among competing goals

Example:
G1=⟨"train_fraud_model","Improve fraud detection",D,accuracy>0.9,time < 2h,P2⟩
G1=⟨"train_fraud_model","Improve fraud detection",D,accuracy>0.9,time < 2h,P2⟩

2. Goal Decomposition

Task Graph
> Construct a directed acyclic graph (DAG) or a hierarchical task network
(HTN):
> TG=(N,E)
> TG=(N,E)
> N: nodes representing sub-tasks TiTi
> E: edges denoting dependency/order
> Each node has its own goal-spec-like tuple
Example:
T1=load datasetT1=load dataset
T2=preprocess dataT2=preprocess data
T3=train XGBoost, SVM, NeuralNetT3=train XGBoost, SVM, NeuralNet

3. Interaction & Conflict Detection
> Define each task with a resource claim R(Ti)R(Ti) and effect set E(Ti)E(Ti).
> Conflicts are detected by:
> Temporal Conflicts: Ti≺TjTi≺Tj but dependent inputs unavailable
> Resource Conflicts: R(Ti)∩R(Tj)≠∅R(Ti)∩R(Tj)=∅ with overlap
> Semantic Conflicts: contradictory constraints or models
> Speculative Loops: if goals regenerate themselves indefinitely
Formal predicate:
> Conflict(Ti,Tj)⇒Res(Ti)∩Res(Tj)≠∅∨¬Compatible(E(Ti),E(Tj))
> Conflict(Ti ,Tj)⇒Res(Ti)∩Res(Tj)=∅∨щ�ŽŵƉĂƟďůĞ;�;dŝ�Ϳ͕ �;Tj))

Main issue NICE
MAY 2025

15

Agentic Engineering
How to align business goals, problem solution, and agents goals?

Automatic Goal Generation?

Similarity with what an LLM produces these days, e.g., the plans they produce?

How would you formalize this? Ho to ensure they solve the problem?

What about outcome quality?

What about conflicting goals, the design trade-offs?

Establishing robust infrastructure and processes

Q: FORMAL
APROACHES

Open NICE
MAY 2025

16

THE STAGE IS
YOURS

