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• Motivation of this talk

• UAV(drones) - popular for many applications and services (civilian, military)

• Multiple UAVs are wirelessly interconnected in ad hoc manner, composing UAV networks 
(UAVNET)

• FANET acronym is also used for Flying Ad hoc Networks - able to forward packets, gather, 
and share information 

• UAVNETs - characteristics and needs different from traditional mobile ad hoc networks 
(MANET) and vehicular ad hoc networks (VANET)

• large variety of applications and operational contexts

• dynamic behavior, rapid mobility and topology changes (both: physical and logical)

• cooperation needed : UAV-ground stations (GS), UAV-UAV, UAV- satellites, UAV swarms

• 3D Work-space/ environment, including space communications

• Obstacle-avoiding trajectories

• Real-time problems during flight

• Energy consumption issues, ….

• In some cases - delay tolerant network (DTN) – dedicated solutions to cope with high delays 
and intermittent connectivity

• Need of specific methods and technologies for Data Plane and Management & Control Planes  
(M&C)  at different architectural layers

•  Physical layer, MAC layer, routing, path planning, tracking, traffic engineering, cooperation, 
security, etc. 

• UAV Path Planning– crucial  topics in UAV area
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1. Introduction

1.1 Unmanned Aerial Vehicles (UAV) (drones) 

• UAVs- popular solutions for many applications (civilian, military domains)

• objectives

• surveillance, delivery, transportation, agriculture, forestry, environmental 
protection

• mission critical operations - rescue/emergency, military actions, security

• UAVs are wirelessly interconnected in ad hoc manner → UAVNET

• The communication technologies used in UAVNETs  depend on  applications
• Examples:

• Outdoor - a simple line of sight 1-to-1 link with continuous signal transmission 
E.g.: surveillance–UAVs can communicate through satellite communication links

• Satellite communication - preferable solution - for security, defense, or more 
extensive outreach operations

• Civil and personal applications - cellular communication technologies are 
preferred

• Indoor communication - e.g., in mesh network and Wireless Sensor Network 
(WSN)  - Bluetooth or point-to-point (P2P) protocols 

• UAV Communication in multi-layered networks – complex process

Slide 6



IARIA NexComm 2025  – May 18-22, 2025 Nice, France

1. Introduction

1.2 UAV Applications - examples
• Individual, Business and Governments

• Express shipping and delivery, Unmanned cargo transport
• Aerial photography for journalism and film
• Disaster management: gathering information or supplying essentials 
• Storm tracking and forecasting hurricanes and tornadoes
• Thermal sensor drones for search and rescue/emergency operations
• Geographic mapping of inaccessible terrain and locations
• Building safety inspections, Precision crop monitoring
• Law enforcement and border control surveillance
• In progress: development of many other use cases 
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1. Introduction

1.3 Unmanned Aerial Vehicles (UAV) - classification 

• UAV Classification- based on different criteria depending on UAV missions and 

specific parameters 

• Missions and applications: civil and commercial UAVs - in agriculture, aerial 
photography, logistics, data collection;  special domain -military missions

• Performance-related characteristics: range, maximum altitude, aircraft weight, 
wingspan, wing loading, speed, endurance, cost design and size 

• Engine type: fuel engines and electric motors

• Mechanical/physical characteristics: 

• weight - Micro, Light, Medium, Heavy, and Super Heavy classes, spanning a 
range from under 5 kilograms to over 2 metric tons

• landing and takeoff capabilities 

• VTOL (Vertical Takeoff and Landing) – no external support to takeoff and 
landing 

• HTOL (Horizontal Takeoff and Landing)- longer flight ranges, can carry larger 
payloads, but need external support 

• Hybrid- combines the capability of both VTOL and HTOL types

• flight range: close, short, medium, and large endurance categories, spanning a 
range from under 10 to 1500 kms
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1. Introduction

1.4 Unmanned Aerial Vehicles (UAV) -different equipment types
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1. Introduction

1.5 UAV Networks

• Single UAVs frameworks have been utilized for quite a long time in many apps.
• The UAVs are connected to either ground base station (GS) or connected with a 

satellite station for communication in a star topology
• Multi UAVs systems i.e., UAV networks; no need to connect every UAV to GS

• Inter-UAV wireless communication is necessary in UAV communication networks 
(UAVCN) , a.k.a.  flying ad hoc network (FANET)

• Notation: UAV network = FANET= UAVCN drone ad hoc network

• MANET = Mobile Ad hoc Network; VANET= Vehicular Ad hoc Network

• FANET ⊆ VANET ⊆ MANET

• UAV networks – characteristics different w.r.t. MANETs and VANETs
• dynamic behavior - rapid mobility and topology (physical, logical) changes
• new challenges for communication at:  PHY layer, MAC layer,  management and 

control, routing and path planning, traffic management, cooperation, security

• Different topics on Multi-UAV networks: Cooperative Multi-UAVs; Opportunistic 
relaying networks; Delay-tolerant UAVs networks; UAV swarms;  Ground WSN; Internet 
of Things (IoT); Cooperation with Cloud Computing; Heterogeneity; Self-organization  
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1. Introduction

1.5 UAV Networks 

• Overview of a multi-UAV ecosystem
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1. Introduction

1.5 UAV Networks
• Multi-UAV topologies- examples

• (a) Star topology: each UAV (node)  is directly connected with GS node

• (b) Mesh topology: the GS is only connected to a single node (cluster head of the 
UAV group- playing a role of Gateway) 

• The cluster head passes the data packets from the GS to the other member 
nodes and vice-versa

• (c) Cluster-based network topology
• The UAVs are grouped in clusters; each cluster has a head
• GS is connected to heads UAVs of clusters
• The heads collect data packets from the member UAVs and  forward them to the 

GS  and vice versa

• (d) Hybrid mesh network- one cluster head UAV is connected to the GS
• The cluster head can pass the information 

• to the UAVs of its group 
• to other nearby cluster heads
• from the GS to other connected nodes and vice-versa

• The GS can be connected also to single UAVs or group cluster heads 

• Inter-UAV communication topology types: star, ring, mesh
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1. Introduction

1.5 UAV Networks
• Multi-UAV topologies: (a) Star b) Mesh (c) Cluster-based (d) Hybrid mesh
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2. Path Planning Problem in UAV Networks

2.1 Path planning (PP) 

• PP is related to the UAV routing

• PP is dependent on geographical/environment  information 

• UAV PP main objectives: 

• Single path planning: to find for an UAV, the best (i.e., optimum) collision-free 
path between a start point and a destination point, while addressing 
temporal, physical, and geometric constraints

• Coverage Path Planning (CPP) – movement in a region - for specific exploring 
UAV applications

• UAV PP (a.k.a. motion planning), is a branch of path-finding used in robotics

• However, UAV specific differences exist, e.g.: 

• 3D space/environment, 3D obstacles

• Some UAVs (e.g., fixed-wing UAV), cannot hover; they must maintain a cruising 
speed; this leads to more constraints

• In contrast, a robot can decelerate and have a complete stop as needed

• PP specific problems of interest: environment modeling methods, path structures, 
optimality criteria, completeness criteria, path finding methods, UAV simulators

Slide 15
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2. Path Planning Problem in UAV Networks

2.1 Path planning (PP) 

• UAV Path Planning essential attributes

• Security: safety of UAVs, including when moving in hostile  environments

• Minimizing the probability of detection by hostile radars and other UAVs

• Physical Viability: there are physical constraints and limitations  (e.g., maximum path 
distance, minimum path length)

• Mission performance: a path should satisfy the requirements of a specific mission

•  Designing a path to complete a mission involves meeting various requirements, 
e.g., maximal turning angles, maximum climbing/diving angles, and minimal flying 
heights

• Real-time implementation: efficiency of the PP algorithm

•  The dynamic nature of UAV flight environments need computationally efficient PP 
algorithms to respond fast to changing conditions

• UAV PP targets: low computational cost, full UAVs' maneuverability, dynamic flight 
control, optimality of trajectories while respecting dynamics constraints
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2. Path Planning Problem in UAV Networks

2.1 Path planning 

• The PP problem has a non-linear nature and frequently an exponential complexity 

• Classes of UAV PP problems (from applications point of view)

• Informative path planning (IPP) problem: UAV paths should maximize the utility of 
data collection

• paths are planned such that the information gathered about an unknown environment 
is maximized, while satisfying the given budget constraint

• Coverage path planning (CPP) problem: to find a path that passes through all 
points of an area or volume of interest, while avoiding obstacles 

• Cooperative path planning: to generate a coordinated mission through utilization of PP 
algorithms 

• Example: 

• a group of UAVs leave a base and should synchronously arrive at a designated 
rendezvous point

• during their journey, the UAVs might execute different  tasks (e.g., area 
searches and detecting objects along) 
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2. Path Planning Problem in UAV Networks

2.1 Path planning 

• Criteria to be considered when searching a path

- minimum values for:  path length, flight time, fuel consumption, and danger exposure

• Depending whether the environment is known or not, PP algorithms can be: 
• Offline PP 

▪ Assumption: all environmental information is known in advance
▪ PP algorithms only depend on static environmental information

•  Online PP 
▪ The environment information is only partially known in advance 

▪ paths must be adjusted in real-time, based on sensor information
▪ more complex problem

• According to the employed cellular environment decomposition model, the CPP 
algorithms can be divided into three main types: 

• no decomposition, exact cellular decomposition and approximate 
cellular decomposition 
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2. Path Planning Problem in UAV Networks

2.2 Path planning model

• Consider a 3D workspace 

•  Let it be w; it  may have obstacles; let woi be the ith obstacle 

• The initial point x init and the goal region x goal are elements in w free 

• The free workspace (i.e., without obstacles) is the overall area represented by 

• wfree = w \Ui woi 

• The PP problem is defined by a triplet (x init , x goal , w free) 

• Definition 1-PP: Given a function δ:[0,T ]-> R3 of bounded variation, where δ (0)=  xinit 

and δ (T)= xgoal, 

• if there exists a process Φ which can guarantee δ (t) ϵ w free , for all  t ϵ [0,T] , then Φ 
is called Path Planning

• Definition 2-Optimal PP 

• Let Σ denote the set of all paths

• Given a PP problem ( -, -, -) and a cost function c :Σ -> R ≥ 0,  if a process fulfils the  
Definition 1 and if  exists a feasible path having the minimum of cost, then the 
associated process Φ’ is named Optimal PP
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3. Path Planning Problem in UAV Networks

3.2 Path planning model

• Path Planning and Trajectory Planning: two distinct problems in robotics, but related 

• Trajectory: a path is parameterized by time t

• Trajectory planning 

• Usually, one considers the solution from a robot PP algorithm and determines how 
to move along the path in wfree

• the path is either a continuous curve or discrete line segments that connects the 
start node xinit to the end node xgoal 

• one needs to find smooth and continuous trajectory segments to move along the 
path

• it can be described mathematically as a twice-differentiable polynomial

• i.e., the velocities and accelerations can be computed by taking the first and 
second derivatives with respect to time 
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3. Environment Representation

3.1 Environment Representation Problem

• Knowledge needed to a path planner  

• about the environment 

• about dynamics of the objects encountered in UAV operation space

• Issues on 3D obstacles representation 

• Obstacles: 

• static or dynamic 

• any geometry: cubes, pyramids,  floating balls, etc.

• The obstacles model will affect the path search algorithms 

• The model should include the medium specifics (urban, rural, forests, special 
zones, radar areas)

• Challenges:

•  Obtaining enough accurate geometric coordinates of the obstacles

• The environment type (containing bridges, buildings (convex, and/or concave), 
complex and cluttered spaces will determine the selection of representation 
methods

Slide 22
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3. Environment Representation

3.1 Environment Representation Problem

• Classes and attributes of reported UAV path-planning approaches

Slide 23

Figure Source: M,R. Jones, S. Djhael, K. Welsh, Path-planning for Unmanned Aerial Vehicles with 

Environment Complexity Considerations: A Survey, ACM Comput. Survey, Vol. 1, No. 1, November 2022.
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3. Environment Representation

3.1 Environment Representation Problem

• Environment complexity related attributes (related to the problem space and 
knowledge on them by the PP algorithm)

• Static-known (SK): All obstacles /objects are both static and known

• Dynamic-known (DK): Although obstacles /objects are mobile, their movement is 
known 

• Static-unknown (SU): Obstacles /objects are static, but their relative positions are 
unknown 

• Dynamic-unknown (DU): All obstacles /objects are both mobile and unknown

• Environment representation related attributes:

• 3D: Able to plan a UAV’s path through a 3D environment (as opposed to a 2D 
environment).

• Cellular decomposition (CD): cellular decomposition strategy to generate a problem 
space.

• Roadmap (RM): Constructs the problem space as a roadmap representation of the 
environment.

• Potential field (PF): Represents the problem space environment as a continuous APF.
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3. Environment Representation

3.2 Environment Representation Methods

• The 3D world space/environment  can be represented in several approaches

• Cell decomposition; Roadmap; Potential field 

• Cell decomposition

• The environment space is divided into a series of nonoverlapping cells 

• Result: a defined and navigable structure within the environment space, constructed 
around the availability of traversable relationships between cells
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3. Environment Representation

3.2 Environment Representation Methods 

• Cell decomposition (cont’d)

• Approximate Cell Decomposition 

• It overlays a regular grid structure upon the environment space

• Decomposition into a set of structured cells: each cell’s location within the 
environment is represented by a Cartesian coordinate system

• The boundaries of cells remain rigid, such that they may not precisely correlate 
with objects and obstacles within the environment

• A cell’s total internal space is composed of free space and obstacle space

• A cell only partially filled by an obstacle is classified as obstacle space

• Implementation variants: 2D or 3D

Slide 26
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3. Environment Representation

3.2 Environment Representation Methods 

• Cell decomposition (cont’d)

• Exact  Cell Decomposition 

• The space is divided into several non-overlapping polygon regions  

• Approaches: 

• Trapezoidal: the space is split in distinct convex cell regions 

• The method typically sweeps vertically left to right across the environment, 
appending vertical deconstruction lines, where an obstacle vertex is 
encountered 

• Boustrophedon: It minimizes the coverage path length in comparison to the 
trapezoidal, through reducing the number of polygon cell regions created
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3. Environment Representation

3.2 Environment Representation Methods 

• Cell decomposition (cont’d)

• Exact  Cell Decomposition (cont’d)

• Note: Boustrophedon is a style of writing in which alternate lines of writing are reversed, 
with letters also written in reverse, mirror-style

• Between cell regions, an adjacency relationships can be defined, leading to  a 
connectivity graph

• The graph nodes are placed in the free space cell region locations

• Result: a continuous free space path can be planned across the environment 
space based upon cell region relationships
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Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity 

Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.

Trapezoidal conversion to Adjacency Graph
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3. Environment Representation

3.2 Environment Representation Methods 

• Cell decomposition (cont’d)

• Adaptive Cell Decomposition (applicable to 2D and 3D space)

• It deconstructs the environment only where an obstacle’s presence requires

• For a PP scenario an adaptive schema called (Quadtree) is constructed by dividing 
the space into four equal sub-regions

•  Where an obstacle exists, then regions are further recursively decomposed 
into four supplementary child regions until the desired stopping condition is met

• Cell decomposition define both free and obstacle space, so the range of movement 
available to UAVs within free space is unbounded

• Results: large search space for any PP algorithm

• Roadmap Representation

• Connectivity graph is constructed; the  nodes represent key free space locations 

• The graph construction strategies can be different

•  The edges may have weights (e.g., related to time or distance); they  represent the 
ability to transit safely between the adjoined nodes

•  This reduction of an environment into a graph-based structure, is similar to a 
classical route planning optimization problem

• where optimal routes are identified by comparing the sum of edge weights in 
candidate paths (additive metric)

• A PP algorithm is applied to this arrangement to discover an optimal path
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3. Environment Representation

3.2 Environment Representation Methods 

Roadmap Representation (cont’d)

• Visibility graphs (VG)

• Let it be a set O of pairwise disjoint objects in the plane (considered as obstacles in 
UAV motion planning)

• The visibility graph is a representation model

Slide 30

Figure- Source:  M. N.Bygi,  3D Visibility Graph, 

https://sharif.edu/~ghodsi/papers/mojtaba-nouri-csicc2007.pdf

• For polygonal obstacles the vertices of these 
polygons are the nodes of the visibility graph

• Two nodes are connected by an arc if the 
corresponding vertices can see each other

• Algorithms for computing the visibility 
graph of a polygonal scene have been 
developed

• Computing the visibility graph: different 
complexity orders exist, for a polygonal scene 
with a total of n vertices: e.g., O(n2log n), O(k + n 
log n) (k is the number of arcs of the visibility 
graph)

• Weakness: in the construction process, 
generated paths pass within close proximity to 
the obstacles they seek to avoid
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3. Environment Representation

3.2 Environment Representation Methods 

• Roadmap Representation (cont’d)

• Voronoi diagrams and path solutions

• Let P = {p1, p2, …pn} be a set of points (called sites) in a 2D Euclidean plane 

• The space is decomposed into regions around each site, s.t. all points in the 
region around pi are closer than to any other point in P

• For UAV movement, one can consider the points in P as representing 
obstacles/threats 

• The  cells edges can be available paths (of an UAV) to the nearest node to the 
target positions 

• A PP algorithm searches the shortest path to go to the nearest node to the 
target positions
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Source: Tong, Wu Wen chao, H. Chang qiang, X. Yong bo, Path Planning of UAV Based on Voronoi Diagram 

and DPSO H., Elsevier, Procedia Engineering 00 (2011) 000–000 4198 – 42031877-7058, 

doi:10.1016/j.proeng.2012.01.643, www.sciencedirect.com
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3. Environment Representation

3.2 Environment Representation Methods 

• Roadmap Representation (cont’d)

• Probabilistic Roadmap

• Visibility graph and Voronoi: the path generation is dictated solely by the 
placement of obstacles within the environment

• A probabilistic approach deconstructs the available free problem space into 
a set of randomly placed connectivity nodes

• Connecting nodes with edges is based upon proximity to a nearest 
neighbor node, combined with the perceived visibility and ability to pass 
unhindered between nodes

• In path construction a significant level of environment knowledge is required 

• This construction method does not provide an optimal solution, but is able to 
guarantee completeness based upon the increasing number of nodes added

• A motion planner is said to be complete if the planner, in finite time, either 
produces a solution or correctly reports that there is none
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Source: M. Farooq et al., Quadrotor UAVs flying formation reconfiguration with collision avoidance using 

probabilistic roadmap algorithm. In 2017 International Conference on Computer Systems, Electronics and 

Control (ICCSEC), pages 866–870. IEEE, 2017.
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3. Environment Representation

3.2 Environment Representation Methods 

• Roadmap Representation (cont’d)

• Rapidly-exploring Random Trees (RRTs)

• RRT focuses upon a randomized approach for exploration of the environment

• The algorithm searches nonconvex, high-dimensional spaces by randomly building a space-

filling tree

• An explorative branching strategy is applied; branching paths are constructed originating from a 

root node

• The tree is constructed incrementally from samples drawn randomly from the search space 

and is inherently biased to grow towards large unsearched areas of the problem 

• A high  level of environment knowledge is required in tree construction to allow successful 

placement of future nodes

• RRT  offers a configurable strategy to manage tree growth and exploration of the problem space
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Source: S.M. LaValle et al. Rapidly-exploring random trees: A new tool for path planning. 1998 Technical 

Report (TR 98–11). Computer Science Department, Iowa State University..
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3. Environment Representation

3.2 Environment Representation Methods

• Roadmap Representation (cont’d)

• Rapidly-exploring Random Trees (RRTs) (cont’d)

• RRT 

• can handle problems with  obstacles and differential constraints 

(nonholonomic and kinodynamic) and can be used in autonomous robotic/UAV 

motion planning

• generates open-loop trajectories for nonlinear systems with state constraints

• can also be considered as a Monte-Carlo method to bias search into the 

largest Voronoi regions of a graph in a configuration space 

• Note 1: A nonholonomic system: - definition

• a mechanical system with velocity constraints not originating from position 

constraints (e.g.: rolling without slipping)

• its state depends on the path taken in order to achieve it

• the system is described by a set of parameters subject to differential constraints 

and non-linear constraints 

• Note 2: Kinodynamic planning (In  motion planning), is a class of problems for 

which velocity, acceleration, and force/torque bounds must be satisfied, together 

with constraints such as avoiding obstacles
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3. Environment Representation

3.2 Environment Representation Methods

• Artificial Potential Field (APF)

• The cell decomposition and roadmap approaches build an environment 

representation from prior known environment knowledge

• (APF) computes in real-time a directional force to be applied to a UAV, based on 

• the gravitational attractive forces applied by goal or target locations

• the cumulative repulsive forces applied by obstacles 

• In a real-world environment 

• the gravitational force is proportional to the Euclidean distance from the UAV to 

target locations

• the repulsive forces can be derived from mounted sensors capable of 

calculating obstacle distance 

• The UAV  makes successive evaluation of the resultant forces

• The abstract representation of APF field forces provided across a whole 

environment grants a UAV the potential for significant autonomy (to find a transit 

path across an environment)

• APF enables a reactive path-planning; dynamic obstacles influence APF forces in 

real-time allowing for adaptive navigation decisions
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4. Path Planning Algorithms and Methods

Path Planning Algorithms Taxonomy

• The PP algorithms can be associated with methods of environment representation

1. Node-based Optimal

2. Sampling-based

3. Mathematical Model-based

4. Bio-inspired

5. Multi-fusion based

6. Machine learning – based 
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4. Path Planning Algorithms and Methods

4.1 Node-based Optimal Algorithms 

• Classical: Dijkstra (shortest path – SP) and A*; it finds optimal routes within a graph 

• Enhancements of the classical solutions are proposed

• E.g.: add to Dijkstra’s SP algorithm additional parameters, (e.g., waiting and 
charging times within the environment’s fast charging machines), augmenting the 
traditional E2E  SP calculation

• Dijkstra enhancement examples - in UAV domain

• Combine an existing algorithm with  novel PP methods thus generating feasible 
paths for multiple UAVs using a heuristic prioritized planning approach 

• Enhanced multi-UAV planning through a new cooperative planning capability

• to support UAV swarm scenarios at a low computational cost

• whilst applying a traditional sparse A* algorithm to plan each individual UAVs path 

• Improved Voronoi diagram graph generation strategy to deconstruct the 
environment, once implemented the traditional Dijkstra algorithm

• Issue: the predefined nature of the graph itself, limits the applicability of such 
algorithms to dynamic-unknown scenarios

• Future work is needed to adapt Voronoi techniques to dynamic or unknown scenarios
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4. Path Planning Algorithms and Methods

4.2 Sampling –based algorithms

• A required prerequisite of problem space knowledge exists, s.t. obstacle or free 
space environment information can be sampled and interpreted by a PP algorithm

• Such approaches are considered as a black box returning a feasible collision-free 
path (they have advantages of high-speed implementation) 

• Information from a collision detector is used, while searching the configuration 
space to sample the environment as a set of nodes or other forms;  then map the 
workspace or just search randomly to an optimal path 

• Examples: Probabilistic Roadmap (PRM); Rapidly exploring Random Tree (RRT)

•  These are efficient for navigating in high-dimensional spaces, to generate feasible 
solutions

• Issue: it is not sure an optimal solution will be achieved the

• PRM works well in high-dimensional search spaces 

• Idea: take random instances from the configuration space

• Then it checks whether or not they are in the free space, and utilize a local 
planner to connect these configurations to other nearby configurations

• Issue: PRM is inefficient when obstacle geometry is not known beforehand

• RRT is a solution regardless of the geometry of the obstacles

• It explores a random tree to produce the first feasible solution to the goal 
through a cluttered environment with non-convex obstacles
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4. Path Planning Algorithms and Methods

4.3 Mathematical model-based algorithms

• Emerging field, applying Linear Programming (LP) and Mixed-integer Linear 

Programming (MILP). These math optimization methods can provide  valuable 

insights into the problem's structure 

• A set of inequalities model the obstacles and environment. The methods: 

• seek to reduce the  problem’s complexity through bounding the diverse 
number of possibilities presented by a variable, to integer values 

• employ probability and mathematical models to predict future events and to 
determine the most efficient curve between the start and goal by minimizing a 
certain scalar quantity 

• Dynamic programming is another  approach, to  obtaining an optimal path when 
full information and unlimited computation resources are available

• Problems: often failure appears to achieve global optimality within a reasonable 
time frame and are occasionally ineffective in  generating feasible solutions

• MILP cannot obtain optimal solutions for large instances (i.e., sets of routing 
destinations) without the application of such a metaheuristic approach. 
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4. Path Planning Algorithms and Methods

4.4 Bio-inspired algorithms

• They typically deconstruct an environment into a searchable problem space using 
exclusively approximate cell decomposition approaches

• Examples: Ant Colony Optimisation (ACO); Particle Swarm Optimisation (PSO) 

• Ant Colony Optimisation (ACO) 

• Swarm intelligence-based algorithm inspired by the collective behavior of ants

• The standard algorithm is inherently parallel and straightforward to execute

• It has resilience and the capacity to explore improved solutions

• The walking path of ants is used to express the feasible solution

• In UAV PP each ant is intended to search for the shortest path in the free space

• Over time, there is a continuous increase in the concentration of pheromones 
along shorter paths, accompanied by a corresponding rise in the preference of ants 
for those paths

• This reinforcement mechanism eventually converges, guiding the entire ant 
colony toward the identification of the optimal path

• ACO improvement examples:

• novel Max-Min adaptive ACO for multiple UAV PP in dynamic and uncertain 
environments

• ACO PP in indoor environments
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4. Path Planning Algorithms and Methods

4.4 Bio-inspired algorithms (cont’d)

• Particle Swarm Optimisation (PSO)

• PSO simulates the social behavior of a swarm of birds or a school of fishes 

• Optimization is achieved by utilizing the shared information of the global and local 
solutions in the swarm

• PSO Actions summary

• Simple agents, called particles, move in the search space

• The position of a particle shows a candidate solution/path

• Each particle velocity : subject of systematic adjustments in adherence to 
defined rules, aimed at refining their positions within the search space

• Concurrently, the collective intelligence of the best solution is captured and 
communicated to fellow particles in subsequent iterations

• When the stopping conditions are reached the algorithm stops and the best 
solution is recorded as a safe and feasible path

• PSO algorithms improvement proposals: 

• maximum density convergence DPSO (MDC-DPSO)

• fast cross-over DPSO algorithm (FCO-DPSO)

• accurate coverage exploration DPSO algorithm (ACE-DPSO)
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4. Path Planning Algorithms and Methods

4.5 Multi - fusion based algorithms

• This approach seeks an improvement in planning ability/ efficiency through integration 
of two established algorithms

• Examples

• Introducing guiding factors (from the A* algorithm), for a more efficient 
exploration using a guiding force, directing the UAV towards the target destination

• Introducing a taboo node matrix, to support the prevention of a deadlock state 
occurrence

• Combinatorial path improvement strategies implement an initial path Dijkstra-
selection policy, plus a PSO being applied to produce smoothed transitions between 
path edges
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4. Path Planning Algorithms and Methods

4.6 Machine Learning – based algorithms

• Machine learning (ML) algorithms are recently proposed in UAV PP area

• ML algorithm types : Supervised Learning, Unsupervised learning, Reinforcement 
Learning (RL), Deep Learning (DL), Deep Reinforcement Learning (DL), etc., learn 
from existing data to build and refine models to solve different tasks.

• ML applied in UAV PP area: clustering methods (QT and 𝐾-means), DL,  RL, DRL,  
cooperative and geometric learning, etc.  – can be employed for UAV PP and collision 
avoidance.

• ML-based applications in UAV -examples: 

• to deal with different perspectives of autonomous UAV flights including tuning the 
parameters for the controller

• adaptive control algorithms for autonomous flight

• recognizing objects in farming;  real-time path planning 

• real-time collision avoidance considering obstacles or other aerial vehicles 

• decisions within environment problem space, seeking to optimize a given cumulative 
reward (RL)
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4. Path Planning Algorithms and Methods

4.7 Examples of Traditional Path Planning Algorithms 

• They are related to specific representations of the environment

• Dijkstra Algorithm 

• Classical solution to solve the shortest path problem

• It make a breadth first state space search looking for the shortest distance of any point in the 
whole free space, layer by layer, through the initial point until it reaches the target point

• Issue: In UAV PP, due to the use of free search, the amount of data of Dijkstra algorithm is 
greatly increased, which affects the speed of solution

• Different researchers have improved and optimized Dijkstra algorithm 

• A* (A-Star)

• Used in path finding problems on graphs and meshes

• It is using a heuristic function to perform an informed search, to estimate the cost of the 
remaining path to the goal

• It has fast calculation speed and can efficiently obtain UAV path information. 

• It is efficient in environments with precise and known information

• Issue: its performance degrades in complex and unknown 3D environments (lack of enough 
information about space structure) 
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4. Path Planning Algorithms and Methods

4.7 Examples of Traditional Path Planning Algorithms

D* (D-Star) 

• D* - real-time search algorithm that recalculates the route when changes occur 
in the environment; It is suitable for dynamic environments

• Issue: its computational complexity can be high (e.g., in 3D, with  many moving 
objects and obstacles

• Theta* (Theta-Star)

• It is an improvement of A* that performs a search in the discretized search space 
using linear interpolation to smooth the path

• Theta* can produce more direct and efficient trajectories than A*

• Issue: lower performance in environments with multiple obstacles and complex 
structures

• PRM (Probabilistic Roadmap) 

• It creates valid paths through the random sampling of the search space 

• Issues:

• it can generate valid trajectories, but its efficiency is lowering by the density 
of the search space 

• it may require a high number of sampling points to represent accurate 
trajectories in a 3D environment with complex obstacles
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4. Path Planning Algorithms and Methods

4.7 Examples of Traditional Path Planning Algorithms 

• RRT (Rapidly Exploring Random Tree)

• RRT uses random sampling to build a search tree that represents the possible 
trajectories of the UAV

•  It is widely used in PP for complex and unknown 3D environmentswith obstacles 
and unknown structures

• It has a probabilistic nature and able to efficiently explore the search space

• Note: Many other RRT variants have been developed in different studies

• Examples

• RRT* (Rapidly Exploring Random Tree Star)

• It is an enhanced RRT; it optimizes the trajectories generated by the original algorithm

•  RRT* reduces the path length and optimizes the tree structure

• It can provide optimal routes, but its computational complexity is higher in 
complex 3D environments

• RRT*-Smart

• It accelerates the convergence rate of RRT* by using path optimization (in a 
similar fashion to Theta*) and intelligent sampling (by biasing sampling towards 
path vertices, which – after path optimization are likely to be close to obstacles)
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4. Path Planning Algorithms and Methods

4.7 Examples of Traditional Path Planning Algorithms 

• A*-RRT and A*-RRT*

• A two-phase PP method that uses a graph search algorithm  

• 1. search for an initial feasible path in a low-dimensional space (not considering the 
complete state space) avoiding  hazardous areas and preferring low-risk routes

• 2. which is then used to focus the RRT* search in the continuous high-dimensional space 

• Real-Time RRT* (RT-RRT*)

•  A variant of RRT* and informed RRT* that uses an online tree  rewiring strategy that allows the 
tree root to move with the agent without discarding previously sampled paths, in order to obtain real-
time path-planning in a dynamic environment

• Theta*-RRT

• A two-phase PP method similar to A*-RRT* that uses a hierarchical  combination of any-angle 
search with RRT motion planning for fast trajectory generation in environments with complex 
nonholonomic constraints

• …. other of RRT variants 

• Artificial Potential Fields

• It uses attractive and repulsive forces to guide the UAV movement towards the goal and away 
from obstacles

• Transform the impact of targets and obstacles on the movement of the drone into an artificial 
potential field;  It can generate smooth trajectories 

• Issue: it may suffer from local minima and oscillations in environments with complex 
obstacles
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4. Path Planning Algorithms and Methods

4.7 Examples of Traditional Path Planning Algorithms 

• Depth-First Search (DFS) 

• It traverses a tree by exploring one node and its descendants at a time; a node 
is selected initially

• The search is progressively expanded to the deepest  nodes ( backtracking only 
when there are no more child elements to explore)

• If the deepest node does not contain the desired solution, the algorithm 
backtracks to the start of the tree and continues the search by exploring adjacent 
nodes on the right, following a similar deep format 

• This process continues until the solution is found 

• Problems: 

• DFS may miss large portions of the workspace since it tries to search several 
paths at a time before completing one path

• DFS may not always yield the optimal solution as it prioritizes the first 
successful path found, disregarding the time or steps taken to reach it, with the 
risk of falling into a loop of exploring an infinite depth 

• DFS can be time-consuming because it may delve into uncharted depths of a 
single node without necessarily leading to a viable solution
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4. Path Planning Algorithms and Methods

4.7 Examples of Traditional Path Planning Algorithms 

• Breadth-First Search (BFS) 

• In BFS all the current level nodes are visited prior to their descendants, following a 
systematic approach where shallow nodes are expanded first by exploring all the 
subsequent level nodes along the path.

• DFS versus BFS

• DFS is  exploring a single path to its deepest depths 

• BFS expands its search by including all nodes within each layer, adhering to 
the FIFO principle implemented through a queue structure.

• BFS could be slower than DFS in finding a path, however, it can be preferred 
due to its systematic exploration of all nodes within each layer; it is able  to keep 
track of visited nodes before moving on to the next layer.

• BFS requires more memory compared to DFS due to the need to store all visited 
nodes in the order they were encountered

• This storage step is important in BFS tree traversal as it influences the 
sequence in which the algorithm explores nodes in the subsequent layer 
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4. Path Planning Algorithms and Methods

4.8 The time complexity of UAV path planning algorithms

Voronoi Diagram  𝑂(𝑛 log(𝑛)) ; n is the number of the vertices

Visibility Graph      𝑂(𝑛2);  n is the number of the vertices

PRM     𝑂(𝑛 log(𝑛)) ; n is the number of iterations

RRT   𝑂(𝑛 log(𝑛)); n is the number of iterations

Dijkstra           𝑂(|𝐸| + |𝑉 | log|𝑉 |) ; V is the set of vertices, E the set of edges

BFS & DFS           𝑂(|𝐸| + |𝑉 |) 

A*            𝑂(𝑛2) ; n is the number of vertices

Exact Cell Decomposition; 𝑂(𝑛 log(𝑛));  n is the number of obstacle vertices
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5. UAV Swarm related topics

5.1 UAV Swarm Path Planning

• An UAV swarm can make decisions collectively and complete its aerial mission using 
relatively simple instructions due to the AI technology and edge computing

• UAV swarm is its application for both civilian and military purposes using swarm 
intelligence

• Swarm intelligence (SI)

• SI is an evolving area of bio-inspired artificial intelligence

• This is obtained due to the deep interconnection of the real system having 
feedback loops 

• SI concept allows scheduling, clustering, optimizing, and routing a cluster of 
similar individuals

• All the individuals follow clear rules and interact with each other and also with the 
environment

• SI basic principles: 

• Proximity: the swarm individuals can easily respond to the environmental 
variance that is caused by interactions among them

• Quality: a swarm can respond to quality factors like location safety only
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5. UAV Swarm related topics

5.1 UAV Swarm Path Planning

• SI basic principles ( cont’d) 

• Diverse response: enables to design of the distribution s.t. all the individuals are 
protected from environmental fluctuations to a maximum level

• Stability: restricts the swarm to show a stable behavior with the changes in the 
environment

• Adaptability : the swarm sensitivity as the behavior of the swarm changes with 
the change in environment

• SI mechanisms: concern the environment, interactions, and activities of the individuals

• There is no direct communication among the individuals in a swarm; they interact 
with each other through environmental alterations

• Thus, environmental alterations serve as external memory

• This simulation of work is done by applying the stigmergy behavior of all the swarm 
members 

• stigmergy- a mechanism of indirect coordination through the environment, 
between agents   or actions

• The individuals choose their actions with an equilibrium between a perception-
reaction model and any other random model 
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5. UAV Swarm related topics

5.1 UAV Swarm Path Planning 

• Examples of programming languages for SI: Proto-swarm, swarm, Star-Logo, and 
growing point 

• The UAV PP of a swarm is challenging (NP-hard problem)

• The PP algorithms proposed for swarm are generally classic and meta-heuristic 
algorithms 

• Classic algorithms require environmental information 

• Examples:  

• Road map algorithm (RMA)

• A* and Artificial Potential Field (APF) algorithms

• Meta-heuristic algorithms require information on the real-time position and 
measured environmental elements. 

• Examples:

• Particle swarm optimization (PSO)

• Pigeon-inspired optimization (PIO)

• Fruit Fly Optimization algorithm (FOA)

• Gray Wolf Optimization algorithm (GWO) 
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5. UAV Swarm related topics

5.2 UAV Swarm Path Planning - taxonomy

• PP algorithms solutions for UAV swarm
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6. Challenges and Trends

• Path Planning in 3D environments and time domain

• Further studies and optimization methods are needed for real time in 3D space

• Difficulties are higher and the problem is much more complex than 2D PP

• Need to consider kinematic, geometric, physical and temporal constraints, 
flight risk levels, airspace restrictions, etc.

• 3D UAV PP are needed, especially in complex environments such as urban areas 
caves, and forests

• Mathematical models for the PP 

• Multi-objective optimization is not enough addressed in the current models.

• Multi-objective functions, Pareto optimal solutions can be obtained taking all 
factors into consideration will make the math UAV PP models more realistic

• Multiple types of static and dynamic constraints are necessary to be considered in 
PP models

• Experimental work

• Many works perform some computational simulation 

• However, for the UAV use in many different applications it is necessary to work with 
real experiments. Problem in experiments : number of UAVs considered 

• The complexity of considering many UAVs is very high, but this is a necessary 
future work so that the use of UAVs especially in urban centers becomes a reality
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6. Challenges and Trends

• Optimization techniques 

• Many optimization algorithms and methods have been already studied: 

• Sampling-based, Node -based, Mathematic Model- based, Bioinspired. 
Multifusion-based, AI, etc.

• Future research combining different methods, such as AI-based (e.g., Neural 
networks, Deep Learning (DL), Reinforcement Learning, DRL, etc.), evolutionary 
algorithms with heuristic, fuzzy inference methods, and variants of more widely used 
methods

• This need is due to the complexity of the problem of the UAV PP in real 
environments, and the different constraints

•  Integration of different segments

• The integration and communication of UAVs with terrestrial and space 
environments is a primary factor and involves also the architecture of the Internet of 
Drones (IoD). 

• Work is needed in order to integrate different spaces connected to each other via 
communication protocols

• Different factors need to be considered: data rate, coverage. scalability, reliability, 
security
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6. Challenges and Trends

• Security and privacy

• Many types of possible attacks exist, to which UAVs have to resist 

• Threat areas need to be diverted by the UAVs during the aerial path to be traveled

• Security and privacy should be considered at each architectural layer: application, 
transport, network and physical layer

• Privacy needs to be addressed more  in future work, given the UAV’s connectivity to 
ground and air space, large amounts of data need to be stored securely

• UAVs in smart cities

• In  smart cities things are connected and can collaborate intelligently and 
automatically to improve quality of life, save lives, and sustain resources. 

• UAV technology can play a vital role in improving many real-time applications of 
smart cities

• More research involving UAVs and smart cities is necessary

• Policies to encourage the use of UAVs are developed, promoting the economy of the 
sector, together with the development of new technologies such as

• DAA (Detect and Avoid) 

• UTM (UAS Traffic  Management), etc.
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6. Challenges and Trends

• Current achievements in PP have included

• 3D UAV PP considering the energy consumption and safety of drones.

• Multi-objective mathematical modeling of UAV PP

• Route planning in smart cities considering the IoD.

• Development of tools that contribute to the advancement of real applications in 
IoD.

• Additional challenges in this context are:

• Airspace regulations to govern the  development of  real UAV applications in different 
environments

• UAV PP in real time considering energy-efficient and safety

• Integration between UAVs and other means of transport (trucks, buses, etc.) for 
practical and safe applications in the context of smart cities

• Development of tools and methodologies for real experiments that consider 
several UAVs
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6. Challenges and Trends

• 3D Environment complexity issues

• UAV PP is  a complex and multifaceted problem

• The  environment modelling techniques reported are applied only to the less complex classes 
of environment

• The  binary choice between a known/ unknown environment is a notable limitation capturing 
only the extreme cases

• However, some problems may exist in which partial environmental knowledge is available

• Research started, to define bounds for how much complete and accurate pre-existing 
environmental knowledge must be, such that the planned paths could be sufficiently flyable, or at 
least flyable with minor modification

• Availability of static-known environment knowledge, is acceptable in a simulated environment ; 
more work is necessary to allow usage in the real-world

• Potential solutions

- Exploration of the hybridised environment planning 

o pre-planning a path with a static representation of the environment

o dynamic unknown obstacles are evaluated in flight, with minor changes supplied to a 
global path

- Individual ability of a UAV to map or sense surroundings throughout an unknown 

environment 

o It is needed an initial environment survey, before requiring centralised processing to 

produce optimal transit paths
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6. Challenges and Trends

• 3D Environment complexity issues (cont’d)

• 3D dimensionality creates inherent complexity problems in determining the UAV paths

• Solutions

o Split the problem into more manageable chunks, e.g. fixing of a UAV 3D altitude; PP 
becomes a 2D problem

▪ Advantage: easier to address both time and computational constraints that might be 
otherwise not possible to meet in  3D computations

▪ Drawback- the path could be non- optimum

o Find some means for offloading some computational task from UAVs 

• Many (preferred) methods reduce the route planner’s search space to enable real-time planning 
and re-planning (e.g., approximate cellular decomposition); other methods use the roadmap 
approach

• Further research is necessary to decide which method is best suited towards a static vs 
dynamic environment or a known vs unknown environment

• Bio-inspired, RL and  multi-fusion based algorithms are mainly constructed around a cell  
decomposition approach

• The majority of the node-based and sampling-based algorithms focus upon a roadmap 
approach

• The APF is not so much used due to the limited ability to maintain field knowledge over large areas
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6. Challenges and Trends

• Communication models – should be refined and improved

• Usually, the simulations assume a static-known knowledge of the environment 

being easily accessible to the UAV and planning agent

• However, such simulation models are constructed around a centralised control of 

the PP (scalability issues exist in non-centralised topologies – e.g. UAV swarm) 

• In such cases each UAV should wait for its peer to complete planning, thus large 

UAV systems face a potential computational planning bottleneck, affecting the 

communication model

• Where an environment’s complexity is known to the planning agent, it is implied that a 

communication model exists, supporting consistent knowledge sharing across the 

whole environment

• Introducing an unknown environment presents an increased likelihood of conflict 

between either a UAV and obstacle or multiple UAVs

• So more rich set of requirement is needed for a communication model that interacts 

with the wider UAV and planning agent

• For large scale UAV networks-  increased communication volume difficulties are 

identified  and such issues should be solved 
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6. Challenges and Trends

• Time considerations

• To achieve a reduction in computational complexity one may fix UAV’s velocity 
constraining an active planning variable 

• To explore both a UAV’s dynamic constraints precisely and limited application of path 
smoothing approaches may complicate the UAV path generation process 

• A computed optimal route could become worthless when the physical abilities of 
a UAV cannot replicate the route in real time

• Open research issue: to adapt the environment model to a given problem, or 
vice-versa
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• UAV Path Planning

• Path Planning- very important aspect in UAV-based systems

• Many traditional algorithms have been used/adapted/developed for UAV environment

• Novel techniques based on AI/ML are proposed

• Many open research issues exist, given the multitude of requirements, constraints and 
factors

• 3D space, static/dynamic environment, requirements related to energy consumption, 
specific types of UAVs and journey ranges, real-time requirements, partial knowledge 
on environment (including static/dynamic obstacles), cooperative tasks for swarms, 
etc.)      

• PP algorithms:

- No algorithm can guarantee the discovery of an optimal path in all scenarios

- The algorithm optimality depends on different factors (problem domain, 
environmental complexity, problem representation, algorithm's native characteristics)

- Certain algorithms are better in finding optimal paths within specific contexts 
(trade-offs between different algorithms exist)

- Practical issues such as computational time and optimality requirements will 
determine the selection of an appropriate PP method 

• Novel techniques, refining existing algorithms, and addressing emerging challenges 
will lead for advancements in UAV path planning 
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• Thank you !

• Questions?
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• List of general Acronyms
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5G CN Core Network

5G-AN 5G Access Network

ACO Ant Colony Optimisation

AI Artificial Intelligence

AODV Ad Hoc On Demand Distance Vector

APF Artificial Potential Field 

BFS Breadth-First Search 

CC Cloud Computing

CP Control Plane

CPP Coverage Path Planning

CR Cognitive Radio

D2D Device to Device communication

DFS Depth-First Search 

DL Deep Learning

DN Data Network

DRL Deep Reinforcement Learning

DoS Denial of Services

DP Data Plane (User Plane UP)

DTN Delay Tolerant Network

E2E End to End

FANET Flying Ad hoc Network

FRZ Flight Restriction Zone 

GF Greedy forwarding

GS Ground Station

HRP Hybrid Routing Protocol

HTOL Horizontal Takeoff and Landing

IPP Informative Path Planning
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• List of general Acronyms
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IoT Internet of Things

MANET Mobile Ad hoc Network

MAC Medium Access Control

MCC Mobile Cloud Computing

MEC Multi-access (Mobile) Edge Computing

MILP Mixed-integer Linear Programming 

ML Machine Learning

NF Network Function

NFV Network Function Virtualisation

ONF Open Networking Foundation

PP Path Planning

PRM Probabilistic Roadmap 

PRP Proactive Routing Protocol 

PSO Particle Swarm Optimisation 

QoE Quality of Experience

RAN Radio Access Network

RL Reinforcement Learning

RRP Reactive Routing Protocol

RRT Rapidly-exploring Random Trees 

SCF Store-carry-and-forward

SDN Software Defined Networking

UAV Unmanned Aerial Vehicle
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UAVNET Unmanned Aerial Vehicle Network

UAV-BS UAV- Base Station

UAV-RS UAV Relay Station

UL Uplink

V2X Vehicle-to-everything

VANET Vehicular Ad hoc Network

VG Visibility Graph

VM Virtual Machine

VTOL Vertical Takeoff and Landing
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8. Path Planning Algorithms Examples
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• Algorithm 1 Standard Rapidly-exploring  Random Trees (RRT) Algorithm

PP objective : to find a path from a starting position (xstart) to a goal position 
(xgoal) through a configuration space. 

1: Choose an initial node xinit and add to the tree t

2: Pick a random state xrand in the configuration space C

3: Using a metric r, determine the node xnear in the tree that is nearest to xrand

4: Apply a feasible control input u to move the branch towards xrand at a pre-

chosen incremental distance

5: If there is no collision along this branch, add this new node xextend to the tree t

6: Repeat steps 2 to 5 until xgoal is included in the tree t

7: Find the complete path from xinit to xgoal

Source: Mangal Kotharia Ian Postlethwaiteb, Da-Wei Gua, A Suboptimal Path Planning Algorithm Using 

Rapidly-exploring Random Trees, Int'l Journal of Aerospace Innovations, Volume 2 · Number 1&2 · 2010

Source: S. M. LaValle, “Rapidly-exploring Random Trees: A New Tool for Path Planning,” 1998, TR 98-11, 

Computer Science Dept., Iowa State University.
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8. Path Planning Algorithms Examples
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Algoritm 2: Modified RRT Algorithm

• The tracking of the generated waypoints depends on the feedback control policy

• The resultant path accuracy depends on the validity of the state space model being used. In 
reality, there exist also sensor inaccuracies, wind effects and other unmodeled factors.

•  Because of incremental growth, the path generated usually includes several extraneous 
waypoints, which is undesirable (travel cost ) 

• RRT can be extended to generate paths in the output space 
1: Choose an initial node winit and add to the tree t

2: Pick a random waypoint wrand in the space C, with small probability, set wrand 

= wgoal to pull the graph towards the goal

3: Using a metric r, determine the node wnear in the tree that is nearest wrand

4: Extend the branch toward wrand by an incremental distance while taking care 

of the turn angle constraint

5: If there is no collision along this branch, add this new node wextend to the tree

6: Repeat steps 2 to 5 until wgoal is included in the tree t

7: Find the complete path from winit to wgoal

Source: S. M. LaValle, “Rapidly-exploring Random Trees: A New Tool for Path Planning,” 1998, TR 98-11, 

Computer Science Dept., Iowa State University.
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Algorithm 3: PRM algorithm

Input: A graph with initial and goal points

Output: Find the shortest path between the start and goal

1 The vertices 𝑉 ← ∅

2 The edges 𝐸 ← ∅

3 while next vertex is not goal do

4 𝑐 ← a random configuration in the free space

5 𝑉 ← 𝑉 ∪ 𝑐

6 𝑁𝑐 ← a set of neighbor vertices chosen from 𝑉

7 for all 𝑐′ ∈ 𝑁𝑐 do

8 if the line (𝑐, 𝑐′) is collision free then

9 add the edge (𝑐, 𝑐′) to 𝐸

10 Find the shortest path from the start point to the goal on the constructed   graph 
using a shortest PP algorithm

11 return The shortest path

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.Idoumghar, UAV Path Planning Techniques: A Survey, RAIRO-

Oper. Res. 58 (2024) 2951–2989 RAIRO Operations Research, https://doi.org/10.1051/ro/2024073 www.rairo-ro.org
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Algorithm 4: Reinforcement learning algorithm for UAV path planning.

Input: A state space 𝒮, an action space 𝒜, a reward function 𝑅(𝑠, 𝑎), a discount factor 
𝛾, an exploration rate 𝜖, and a maximum number of episodes 𝑁

Output: A policy 𝜋(𝑠) that maps states to actions

1 Initialize a 𝑄-function 𝑄(𝑠, 𝑎) arbitrarily Initialize an empty replay buffer 𝐷
2 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝑁 do
3 Initialize the state 𝑠0 to the start position
4 while 𝑠𝑡 is not the goal position do

5 With probability 𝜖 choose a random action 𝑎𝑡 from 𝒜, otherwise choose 𝑎𝑡 = argmax𝑎 
𝑄(𝑠𝑡, 𝑎)
6 Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1

7 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐷
8 Sample a mini-batch of transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠 𝑖+1) from 𝐷
9 Update the Q-function using the Bellman equation:

𝑄(𝑠𝑖, 𝑎𝑖) ← 𝑄(𝑠𝑖, 𝑎𝑖) + 𝛼 (𝑟𝑖 + 𝛾 max𝑎 𝑄(𝑠 𝑖+1, 𝑎) − 𝑄(𝑠𝑖, 𝑎𝑖))
10 Set 𝑠𝑡 = 𝑠𝑡+1

       End while
    End do
11 return The learned policy 𝜋(𝑠) = argmax𝑎 𝑄(𝑠, 𝑎)

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.Idoumghar, UAV Path Planning Techniques: A Survey, RAIRO-

Oper. Res. 58 (2024) 2951–2989 RAIRO Operations Research, https://doi.org/10.1051/ro/2024073 www.rairo-ro.org
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