
TUTORIAL #1 BARCELONA
2025

1

The Anatomy of Agentic
Frameworks and Practical
Use Cases
Speaker

Prof. Dr. Petre Dini, IARIA, USA/EU

Stories: I remember when I was presenting the project requirements and goals, while some people were already starting to write the code.
I recall that with partial accuracy only, we achieved 99.999 service availability across the USA.

Statement: We were all using an Agentic framework, with one small caveat: not based on a natural language narrative
for agent communications, but based on formal rules and well-defined protocols, instead.



Déjà vu BARCELONA
2025

2

Basis: requirements, players & duties (hardware and software), message flowcharts, hardware selection,
software framework, APIs, Interfaces, user interfaces, etc. [then: verification, validation, assurance)

‘Old’ OO (or so) models
> English narrative
> Structured requirements

> Nouns, verbs -> objects, actions, goals
> OO-framework (IBM: Java, Eclipse}

Framework objects (cca 10%)
Specific objects, operational request
Middleware for object communication
(traders, brokers, hierarchy, etc.)
BUS architecture (event subscription)
Object storage (specific databases:
ObjectStore, etc.)

MODEL
Abstract classes, objects, aggregation, inheritance, object contracts, agents (smart objects), MAS, agentic framework

‘New’ Agentic frameworks
> English narrative
> Structured requirements
> LLCs identify main requirements

> LLMs identify specific constraints and goals
> Agentic-framework

Framework agents (cca 90%)
Specific agents
Middleware as an agent [Orchestrator]
Communicating Agents (hallucinations, bias)
Agents library

Formalisms
Verification
Validation
Maintenance
Modeling
Simulation
Monitoring
Management
Reflective
architectures
vs
Digital Twins

Keywords of change: automation, self-reasoning, and self-healing



30 Years Ago BARCELONA
2025

3



Sep 20 01:07:00 router.cisco.com 571: Sep 20 01:12:31:
%SYS-5-CONFIG_I: Configured from console by vty1
(144.254.9.79)

* Sep 20 01:12:31: %SYS-5-CONFIG_I: Configured from
console by vty1 (144.254.9.79)

Syslog Message “Body” Format in the IOS

• NTP is needed!

M
e
s
s
a
g
e

t
e
x
t

CONSOLE

SERVER

Router

Timestamp from
the server

Timestamp from
the router

Timestamp IOS Component Severity Mnemonic Message-text

• Header:level can be different than Body:severity



Use Case #1: Sport Tickets BARCELONA
2025

(Example) Assume
a. We have a paragraphs of ten sentences describing a potential system (irrelevant, but as

an example: selling football tickets, coming with requirements for distribution, security,
authenticity of the tickets, etc.)

b. We opt for using an agentic framework
c. Q1: What are the sequence of steps?
d. Q2: Are there dedicated agents we should choose from (having definite roles,

limitations, etc.)?
e. Q3: Can we build personalized agents and insert them into the whole framework?
f. Q4: How are the constraints of the original system (requirements) translated into the

goals of the agentic framework and how are the goals assigned to the agents, namely,
are they split (par., seq.) in sub-goals, or joint, or mediated if they are conflicting?

Note: goals conflicts can be static (easy verifiable) or dynamic (changing, status, volatile, …)



Sport Tickets - Pipeline BARCELONA
2025

6

Q1 — Sequence of steps (agentic design pipeline)
 Requirements → Constraints

Normalize the paragraph into atomic constraints (e.g., “only 6 tickets/user,” “cryptographic authenticity,” “latency < 200 ms,” “fair queueing,” “GDPR
compliance”).

 Constraints → Goals (WHAT)
Translate each constraint into one or more goals with acceptance criteria (e.g., VerifyTicketAuth with “<5 ms verify; FIPS-approved crypto”).

 ' ŽĂůƐ�ї ��ĂƉĂďŝůŝƟĞƐ (HOW)

For each goal, list capabilities needed: verify signature, allocate inventory, anti-bot scoring, payment, ID verification, audit logging, anomaly detection.
 Organization model

Choose agent types and interaction styles: hierarchical (coordinator), market/contract-net, or peer mesh. Define authority, priorities, SLAs.

 Allocation
Map goals ↔ agents via: required capability match, trust level, performance budget, and data locality. (Greedy first fit → refine with constraints solver).

 Coordination protocols
Pick protocols per interaction: request–response, publish/subscribe, contract-net (bids), two-phase commit, saga (compensations).

 Conflict handling
Predefine policies for scarce inventory, double-spend, identity disputes, fairness vs. revenue, security vs. latency. Attach tie-breakers.

 Assurance hooks
Add runtime monitors (temporal rules), guard rails (Simplex/shields), provenance logs, and canary scenarios.

 Simulation & dry-runs

Load/chaos tests with adversaries (scalpers/bots), failure injection, latency budgets.
 Deployment with continuous governance

SLAs, rate limits, ABAC/RBAC, rotation of keys/models, drift control, post-mortems.



Sport Tickets - Agents BARCELONA
2025

7

Q2 — Dedicated agents (typical roles & limits)
 Orchestrator/Goal Manager: decomposes goals, assigns tasks; limits: no direct data custody.

 Inventory Agent: seat allocation, holds, releases; limits: cannot bypass fairness policy.

 AuthN/Z Agent: KYC/ID checks, RBAC/ABAC decisions; limits: no pricing authority.

 Crypto/Attestation Agent: signing, verification, key rotation, HSM access; limits: read-only to PII.

 Payment & Risk Agent: PSP integration, fraud scoring, SCA, chargeback handling; limits: cannot allocate seats.

 Anti-Bot/Trust Agent: device fingerprinting, rate-ůŝŵŝƚ�ĂĚǀ ŝĐĞ͕���Wd�, ��ŽƌĐŚĞƐƚƌĂƟŽŶ͖ �ůŝŵŝƚƐ͗ �ĂĚǀ ŝƐŽƌǇ�ї �KƌĐŚĞƐƚƌĂƚŽƌ�
enforces.

 Queueing/Fairness Agent: virtual lobby, lottery/queue discipline, per-user caps; limits: cannot edit ticket metadata.

 Compliance & Privacy Agent: data minimization, consent, retention, audit trails; veto power on unlawful flows.

 Observability Agent: SLO monitors, tracing, anomaly alerts; limits: no business decisions.

 Settlement & Ledger Agent: immutable log (append-only), refunds, compensations; limits: no user policy changes.

Q3 — Personalized agents
Yes. Define a capability contract (inputs/outputs, pre/post-conditions, latency & trust class), implement your
agent, and register it with the Orchestrator. It can then be selected during allocation if it satisfies:

capabilities goal.reqs && SLA_met && policy_compliant && trust_level_ok



Sport Tickets - Goals BARCELONA
2025

8

1. Requirements (excerpt)
R1 Authentic tickets only; cryptographic validation.
R2 Max 6 tickets/user; prevent bots.
R3 Fair access at drop time; no cart hoarding.
R4 End-to-end latency < 200 ms.
R5 GDPR compliance; immutable audit.

dƌĂŶƐůĂƟŶŐ�ZĞƋƵŝƌĞŵĞŶƚƐ�ї �' ŽĂůƐ�ї ��ŐĞŶƚƐ�;ŵŝŶŝ�ĞǆĂŵƉůĞͿ
2. Goals
G1 VerifyTicketAuth (verify ≤5 ms, FIPS algos).
G2 EnforceUserCaps (≤6/user, per-event).
G3 EnsureFairAccess (virtual lobby + lottery/queue).
G4 MeetLatencyBudget (<200 ms, back-pressure).
G5 Provenance&Audit (append-only, replayable).
G6 AntiBotMitigation (risk score; action ladder).
G7 PrivacyCompliance (min data, DSR support).3. Allocation (sample):

' ϭ�ї ��ƌǇƉƚŽͬ �Ʃ ĞƐƚĂƟŽŶ��ŐĞŶƚ
G2 → Queueing/Fairness Agent + AuthZ Agent
' ϯ�ї �Y ƵĞƵĞŝŶŐͬ &ĂŝƌŶĞƐƐ��ŐĞŶƚ�;ůŽƩ ĞƌǇͬƋƵĞƵĞ�ƉŽůŝĐǇͿ
G4 → Orchestrator + Observability (shed/back-pressure)
' ϱ�ї �̂ ĞƩ ůĞŵĞŶƚ�Θ�>ĞĚŐĞƌ��ŐĞŶƚ
' ϲ�ї ��ŶƟ-Bot/Trust Agent (+ Orchestrator enforcer)
G7 → Compliance & Privacy Agent

4. Conflict patterns & policies
Fairness vs. Revenue (R2 vs dynamic pricing): declare lexicographic
priority: safety/security → compliance → fairness → revenue.
Latency vs. Security (R4 vs strong checks): apply progressive trust: light check
on hot path; deep check async or on anomalies.
User Cap vs. Group Orders: introduce goal refinement: EnforceUserCaps → 
per-identity + per-payment-instrument + per-device.
Anti-Bot false positives vs. Fairness: dual-channel appeal (human-in-the-loop)
with bounded SLA.



Use Case #2: Healthcare- Agents BARCELONA
2025

9

The increasing pressure on healthcare systems to deliver rapid, accurate, and equitable medical responses has
intensified interest in telehealth triage augmented by intelligent agents. In such settings, patients interact
remotely with AI-assisted services capable of preliminary symptom evaluation, prioritization, and e-
prescription. The incentive lies in creating an agentic ecosystem where distributed digital actors — diagnostic
agents, privacy guardians, audit agents, and prescribing modules — collaborate autonomously yet transparently
to ensure that each clinical and administrative action respects medical ethics, data protection laws, and
accountability standards.

Building this environment demands traceable goal alignment among agents: safety goals constrain diagnostic
decisions, privacy goals regulate data access and transfer, and audit goals enforce non-repudiation and
explainability. The overarching motivation is to design an intelligent, self-monitoring telehealth process that
maintains human oversight while improving timeliness and consistency. From these drivers emerge the system
requirements — for secure reasoning pipelines, consent-aware data flow, verifiable e-prescription issuance, and
adaptive escalation to human clinicians — forming the structural and behavioral blueprint of an agentic
telehealth framework.

Telehealth triage & e-prescription scenario; agentic coordination under strict safety, privacy, and auditability
constraints



Healthcare - Goals BARCELONA
2025

10

B1. Requirements (excerpt)
R1 Patient safety first; critical symptoms must escalate to human
within 2 min.
R2 HIPAA privacy; minimum necessary data, consent tracking, audit
logs.
R3 e-Rx authenticity; cryptographic signing + pharmacy verification.
R4 Latency: triage advice ≤ 5 s p95; video intake stable at 30 fps.
R5 Bias control in triage recommendations; explanations required.
R6 Data provenance for training/QA; no raw PHI leaves region.
R7 Fallback: degraded service during outages (phone/SMS, cached
rules).

dƌĂŶƐůĂƟŶŐ�ZĞƋƵŝƌĞŵĞŶƚƐ�ї �' ŽĂůƐ�ї ��ŐĞŶƚƐ�;ŵŝŶŝ�ĞǆĂŵƉůĞͿ

B2. Goals (what?)
G1 SafeTriage (ĐƌŝƟĐĂůї ŚƵŵĂŶ ≤2 min; advice ≤5 s; explainable).
G2 PrivacyCompliance (HIPAA, consent, minimization, DSR).
G3 AuthEPrescription (sign e-Rx; verify at pharmacy).
G4 MeetLatencyBudget (p95 ≤5 s; video QoS maintained).
G5 Provenance&Audit (append-only, region-bound).
G6 BiasMonitoring (drift/inequity alarms; periodic fairness reports).
G7 Resilience (graceful degradation path active on SLO breach).

B3. Agents (roles)
Orchestrator/Goal Manager — decomposes & routes requests, enforces priorities.
Triage Agent — symptom NLP + rules/ML; advisory on severity.
Clinical Safety Agent (Runtime Assurance) — safety authority; escalates to human; Privacy &
Compliance Agent — consent checks, field minimization, policy gate.
e-Rx Crypto Agent — HSM-backed signing/verification, key rotation.
QoS Agent — monitors latency/video metrics; triggers adaptive bitrate/throttling.
Bias & Drift Agent — monitors cohort outcomes; gates model updates.
Provenance/Ledger Agent — immutable logs, regional storage policy.

Fallback/Resilience Agent — activates phone/SMS workflows; caches top rules.



Healthcare BARCELONA
2025

11

B4. Allocation (sample):
' ϭ�ї �dƌŝĂŐĞ��ŐĞŶƚ�;ĂĚǀ ŝĐĞͿ�н��ůŝŶŝĐĂů�̂ ĂĨĞƚǇ��ŐĞŶƚ�;ĞƐĐĂůĂƟŽŶ�
decision).
G2 → Privacy & Compliance Agent (gate on every data flow).
G3 → e-Rx Crypto Agent (sign/verify).
G4 → Orchestrator + QoS Agent (shed load, degrade bitrate).
G5 → Provenance/Ledger Agent.
' ϲ�ї ��ŝĂƐ�Θ��ƌŝŌ��ŐĞŶƚ�;ŽďƐĞƌǀ Ğ-only → periodic reports; veto 
G7 → Fallback/Resilience Agent (policy-driven activation).

B5. Conflict patterns & policies
• Latency vs. Safety: If p95 > 5 s, short-path rules activate; Safety Agent keeps
escalation budget ≤2 min.
• Privacy vs. Explainability: Explanations must not reveal PHI beyond consent;
Compliance Agent redacts.
• Throughput vs. Video QoS: QoS Agent reduces bitrate/resolution before
dropping sessions.
• Model vs. Policy: If Triage suggests “home care” but red flags present, Safety
Agent overrides → human.

B6. Example temporal guards
IF red_flag_detected THEN escalate_to_human WITHIN 120s
IF queue_length > Qmax THEN enable_short_path_triage AND
alert Ops
IF consent.revoked(user) THEN purge non-essential caches
WITHIN 24h

B7. Assurance snapshots
Pre-deployment: spec-based tests
(STL/MTL), failure injection (network,
HSM), PHI leak scanner.
Runtime: monitors + signed decisions to
Ledger; fairness drift alarms weekly;
Simplex-style safety override always on.
Continuous: canary updates; post-
incident reviews tied to provenance.



Private/ Personalized Agents BARCELONA
2025

12

A1) Example personalized agent [Health]

Agent name: ProgressiveTrustScorer
Purpose: Score each purchase/session for bot/abuse risk without hurting latency; supports progressive checks
(cheap→costly).
Capability contract (WHAT + SLA):
Inputs: { user_id, device_fingerprint, payment_hash, ip, behavior_signals[], cart_value }
Outputs: { risk_score [0,1], risk_band {low,med,high}, actions: {throttle?, challenge?, block?}, rationale[] }
Non-functionals: p95 ≤ 5ms, p99 ≤ 12ms, availability ≥ 99.95%, determinism on same inputs (seeded), no PII
persistence.
Trust class: Advisory (cannot directly block; Orchestrator enforces).
Policies: No use of prohibited features (e.g., demographics), explainability required (rationale with top 3
features), signed responses.



Private/ Personalized Agents BARCELONA
2025

13



Healthcare- Agents BARCELONA
2025

14

A2) Avoiding conflicts with the “agent library”

Design-time controls
1.Capability ontology & registry

1. Each agent declares capabilities, pre/post-conditions, trust class, resource
budget.

2. Namespacing: risk.trust.progressive.v1. Prevents accidental role

overlap.
2.Conflict declarations

1. Agents state mutual-exclusion or precedence:
1.conflicts_with: ["risk.trust.static"],

precedence_under: ["queue.fairness"].

3.Policy contracts (ABAC/RBAC)
1. Who can decide vs. advise. Your new agent stays “advisory” unless governance

promotes it.

4.Static conformance suite
1. Schema validation, SLA proof (bench harness), negative tests (reject PII, fail

closed).

5.Formal invariants (lightweight)
1. Temporal specs like “never both block and low band”; Orchestrator checks at

runtime.

Run-time controls
Arbitration layer in Orchestrator

Priority graph: Safety > Compliance > Fairness >
Revenue.
Rule combiner: (deny-overrides, permit-overrides, first-
applicable).

Resource quotas & circuit breakers
Cap CPU/latency; isolate misbehaving agents (bulkhead

pattern).
Shadow/canary & auto-revert

New agent runs shadow; if SLOs or policy drift, auto-
disable and alert.

Provenance & explainability bus
�ůů�ĚĞĐŝƐŝŽŶƐ�ǁ ŝƚŚ�ƐŝŐŶĂƚƵƌĞƐ�ї �>ĞĚŐĞƌ͖�ĐŽŶŇŝĐƟŶŐ�
outputs are flagged for adjudication.

Treat your custom agent as a plugin with a contract.
Declare where it sits in the hierarchy, what it may never do, and how conflicts are arbitrated.



Healthcare- Synchronization BARCELONA
2025

15

Agents' behavior is driven by feedback from the real system (disregard simulation). The events from the system reach the
agents after going up from the physical elements (e.g, CPU, routers) through many levels, and each attaches to the event its
own timestamp (assume they all have a clock); Now, the events reach different agents. What is the mechanism for agent
synchronization?

1. Time Sources and Synchronization Layers
Clock sync protocols:

• NTP (Network Time Protocol) — ms-level sync, good for distributed IT.
• PTP (Precision Time Protocol / IEEE 1588) — μs or ns-level sync, used in telecom, finance, avionics.
• GPS-disciplined clocks — absolute reference, often for high-assurance systems.

Local monotonic clocks: Each node uses a monotonic counter (not wall clock) to avoid regressions when NTP shifts.

2. Event Timestamp Strategies
Source timestamping: Events stamped at origin (e.g., NIC, router ASIC, kernel driver). Highest fidelity, but requires hardware
support.
Ingress timestamping: Middleware adds a timestamp on receipt. Easier, but mixes propagation delays.
Hybrid: Keep both (source + ingress) so later agents can reason about uncertainty.



Healthcare- Synchronization BARCELONA
2025

16

3. Event Correlation Mechanisms
Lamport clocks: Logical clocks — give a partial order (“happened before”) without relying on wall time.
Vector clocks: Capture causality in multi-agent settings; more overhead but resolve concurrent vs. causal.
Hybrid logical clocks (HLC): Combine physical time with logical counters — practical for distributed systems like

CockroachDB.
Causal message tagging: Propagate context (e.g., trace IDs in OpenTelemetry) so events can be reassembled in order.

4. Dealing with Clock Drift and Skew
Bounded uncertainty windows: Every timestamp is expressed as [t ± δ] where δ is drift + jitter. Agents reason over
intervals, not points.
Temporal logic with slack: Instead of “event A before event B,” you specify A → B within [0, 50 ms] with
tolerance.
Resequencers / buffers: Small delay queues reorder events by timestamp before passing to reasoning agents.



Healthcare - Synchronization BARCELONA
2025

17

5. Practical Tools / Patterns
Syslog limitation: As you noted, fields vary — solution is a normalization gateway that canonicalizes all logs/events into a
shared schema (event_time, ingest_time, source_id, uncertainty).
Observability frameworks: OpenTelemetry / Jaeger / Zipkin use trace & span IDs + NTP/PTP to unify timing across layers.
Event bus guarantees: Kafka, Pulsar, etc., ensure ordering per partition; you still need clocks for cross-partition causality.
Complex Event Processing (CEP) engines: They implement “temporal windows” with late-event handling and watermarking.

6. In Agentic Systems (your setting)
Each agent sees “causal envelopes” not raw timestamps: e.g., Event(A) @ [12:00:01.002 ± 3ms].
Orchestrator/Time Service agent normalizes events:

• Aligns clocks (NTP/PTP),
• Canonicalizes timestamp fields,
• Adds provenance (which layer’s clock),
• Issues watermarks (“safe up to T”).

Agents’ reasoning is then expressed in temporal logics with slack (e.g., “if login-failed followed by account-locked within
10s ±1s, trigger escalation”)

Synchronization is achieved by global clock sync (NTP/PTP) + event normalization (canonical timestamps) + logical/causal
clocks for ordering + uncertainty windows for safety. In practice, a dedicated “Time/Provenance Agent” often sits in the
architecture to buffer, reorder, and annotate events before downstream agents consume them.



Goals Processing in Agentic Frameworks BARCELONA
2025

18

1. ݙ Starting Point: Original Requirements
In agent-based systems, requirements are usually given as high-level objectives (sometimes vague, sometimes constrained).
Example: “Ensure safe delivery of supplies to location X.”
These are not yet actionable for an agent — they need to be processed into goals.

2. ᇣ Goals Composition
Definition: Combining multiple requirements or subgoals into a coherent higher-level goal.
How it works:

• If two requirements overlap or are interdependent, they may be merged.

• Example: “Deliver supplies” + “Minimize exposure” → Composite goal: Deliver safely while minimizing risk.
Agentic role: Ensures that agents do not treat requirements in isolation but as part of a system of intent.

3. ✂ Goals Splitting (Decomposition)
Definition: Breaking a complex or abstract goal into manageable subgoals that can be executed by an agent or a group of agents.
How it works:

• Goal “Deliver supplies safely” →
• Plan route selection.
• Avoid hazardous zones.
• Monitor vehicle health.
• Confirm package receipt.

Framework function: Provides hierarchical task networks (HTN) or similar structures where high-level goals →
lower-level operational goals.



Goals Processing in Agentic Frameworks BARCELONA
2025

19

4. ၲ Goals Derivation
Definition: Deriving specific goals from general requirements using constraints, context, and reasoning.
How it works:

• Original requirement: “Maintain system stability.”
• Derived goals:

• Keep CPU temperature < 80°C.
• Ensure error rate < 1%.
• Balance resource allocation across processes.

Agentic role: Converts vague mission statements into measurable, actionable, verifiable goals.

5. ⚖ Conflict Handling
Goal conflicts often arise in multi-goal or multi-agent setups.

• E.g., “Minimize delivery time” vs. “Minimize exposure risk.”

Frameworks resolve this via:
• Priority hierarchies.
• Utility-based reasoning.
• Constraint satisfaction.

6. ⨊ Integration in Agentic Frameworks
In practice:
1.Requirement ingestion → agent interprets mission.
2.Goals composition ї �ďƵŝůĚ�ĐŽŵƉŽƐŝƚĞ�ŽďũĞĐƟǀ ĞƐ͘
3.Goals splitting ї �ŐĞŶĞƌĂƚĞ�ƐƵďŐŽĂůƐ�ĨŽƌ�ĂĐƟŽŶ�ůĂǇĞƌƐ͘
4.Goals derivation → ground subgoals in specific metrics/constraints.

5.Execution + monitoring → track progress and revise if context changes.



Goals Processing in Agentic Frameworks BARCELONA
2025

20

✅ In summary:
Composition = merging goals into a unified intent.
Splitting = decomposing into smaller subgoals.
Derivation = translating abstract requirements into concrete, operational goals.

Pipeline sequence
Original Requirements ї �ĐĂƉƚƵƌĞĚ�ĂƐ�ŵŝƐƐŝŽŶ�ŽďũĞĐƟǀ ĞƐ͘
Goals Composition ї �ŵĞƌŐĞ�ĂŶĚ�ĂůŝŐŶ�ŵƵůƟƉůĞ�ŝŶƚĞŶƚƐ͘
Goals Splitting → decompose into manageable subgoals.
Goals Derivation → refine into contextual, measurable targets.
Execution & Monitoring ї �ĂĐƟŽŶ͕ �ĨĞĞĚďĂĐŬ͕�ĂŶĚ�ĂĚĂƉƚĂƟŽŶ͘

Q: How do agents decide
- when compose/split/derivate
- who takes the duty
- what about conflicts handling



Goals Processing in Agentic Frameworks BARCELONA
2025

21

1. ⚙ When to Compose, Split, or Derive Goals

Agents usually rely on triggers and context checks:

Compose goals
• Trigger: multiple incoming requirements overlap, share resources, or are mutually dependent.
• Example: “Collect sensor data” and “Preserve battery life” → compose into “Collect data with minimal energy cost.”
• Mechanism: utility fusion (maximize combined utility subject to constraints).

Split goals
• Trigger: a goal exceeds the agent’s capability or requires sequential/parallel substeps.
• Example: “Deliver package to destination” ї �ŶĂǀ ŝŐĂƟŽŶ�н�ŽďƐƚĂĐůĞ�Ăǀ ŽŝĚĂŶĐĞ�н�ĚĞůŝǀ ĞƌǇ�ĐŽŶĮ ƌŵĂƟŽŶ͘
• Mechanism: hierarchical task networks (HTN), recursive decomposition.

Derive goals
• Trigger: vague or abstract requirements need operational grounding.
• Example: “Maintain safety” → concrete thresholds like max temperature, max error rate.
• Mechanism: rules, domain ontologies, or constraint satisfaction.



Goals Processing in Agentic Frameworks BARCELONA
2025

22

2. ਱ Who Takes the Duty
In multi-agent frameworks, delegation is crucial:
Capability-based allocation

• Each agent maintains a profile (skills, resources, trust level).
• Goals/subgoals are mapped to the agent best able to execute them.

Market- or contract-based allocation
• Agents “bid” for goals based on utility/cost (Contract Net Protocol).
• Efficient for distributed coordination.

Role-based allocation
• Predefined roles (e.g., leader, monitor, executor).
• Subgoals flow to agents with the designated role.

3. ⚖ Conflict Handling
Conflicts arise in two dimensions:
Between goals (internal to one agent)

• Example: “Minimize time” vs. “Minimize energy use.”
• Resolution methods:

• Priority ordering (hard-coded or context-sensitive).
• Multi-objective optimization (Pareto fronts, weighted sums).
• Meta-reasoning (agent reflects on which goal matters most now).

Between agents (distributed)
• Example: two UAVs both plan to occupy same air corridor.
• Resolution methods:

• Negotiation protocols (bargaining, mediation).
• Coordination strategies (swarm consensus, auction allocation).
• Arbitration (leader or central authority resolves).

4. ⨊ Integration in Agentic Frameworks
Most agent frameworks (e.g., BDI: Belief–Desire–Intention) embed this into deliberation
cycles:
1.Perceive → environment and requirements.
2.Deliberate ї �ĚĞĐŝĚĞ�ĐŽŵƉŽƐŝƟŽŶͬ ƐƉůŝƫ ŶŐͬ ĚĞƌŝǀ ĂƟŽŶ͘
3.Allocate → self or other agents.
4.Act → execute subgoals.
5.Revise ї �ƌĞƐŽůǀ Ğ�ĐŽŶŇŝĐƚƐ͕ �ƵƉĚĂƚĞ�ƉƌŝŽƌŝƟĞƐ͘
Formally, this is often modeled as goal-lifecycle automata with transitions triggered by context

and feasibility checks.

Formally, this is often modeled
as goal-lifecycle automata with transitions
triggered by context and feasibility checks.



Goals Processing in Agentic Frameworks BARCELONA
2025

23

✅ In summary:
When: composition, splitting, derivation are triggered by complexity, overlap, or vagueness.
Who: allocation follows capability, contracts, or roles.
Conflicts: handled by priority, optimization, or negotiation.

(Goal → {Compose, Split, Derive} → Assign Duty → Resolve Conflicts → Execute)

 Object-Z / Vienna Method (just to say!)



Past Revisited BARCELONA
2025

24

History revisited (i)
- Requirements
- Requirements tracability
- Pre-post conditions
- Control policies (Definition/Access Points)
- Agent contract agreements
- SLA/SLO agreement
- Formal specification of interactions (V&V)
- (Formal Robust Protocols)
- Unique standard framework (s) (Eclipse, as an example)
- Patterns, Artefacts, Software reuse
- Customized (embedded) agents
- Formal agent communication (trusted exchanges)

Formal Methodologies
Rebecca Wirfs-Brock - Responsibility-Driven Design (RDD) (OOPSA 1989+)
Bertrand Meyer - Design by Contract (DbC) - Eiffel programming language (~ 1986 +)
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
with a foreword by Grady Booch: - Design Patterns (reusable elements) (OOPSLA, 1994)

Agents
AT&T - Monitoring and Management system had ~ 600 specialized agents (~2000)
Cisco Systems - inside each router (~50 agents, fault, performance, etc.)
ODP (1990 - Trader - formal definition), CORBA (1990 Broker - SDL specifications), TINA, etc. (Manager) --- > Agentic (Orchestrator).

History revisited (II)
SLA/SLO specifications
UML (semi-formal) specification (another tens, or hundreds)
SDL, LOTOS – protocol formal specifications
Patterns Catalogues
Policy Formal Definitions/Frameworks (type, actions, guarantees)
Activities: actions, plans (par. & seq., actions, temporal aspects,
conflicts, mitigation, etc.)
Versioning control (configuration mgmt)
Support for Legacy systems
! 99,999 service availability

Q; Status quo
Design time consuming
Limited knowledge (of some, all)
Human-depending productivity
High skilled experts (cost)
Long learning curve
Poor code documentation / manuals



Discussion BARCELONA
2025

25

BACK TO AGENTIC FRAMEWORK (again LLMs/LCMs and some standard agents)
Q: Status quo
Design time consuming
Limited knowledge
Human-depending productivity
High skilled experts (cost)
Long learning curve
Poor (code) documentation / product manuals

A+
Quick design (more than Agile approach)
Prompt information at large scale [caveat-pre-knowledge is needed]
Automation-based productivity (less human workforce0
Min high skilled exerts (prompt experts and tools knowledgeable)
Long learning curve (almost instant; see prerequisites)
Instant generation of documentation / manuals

A- (to be improved)
Deskilling
Highly depending on a few individuals
Lack of or not at a required level of Explainability, Ethics(Opaqueness)
Uncontrolled bias (European Act, USA ….)
Great ROI (for some)
Unreliable information (hallucinations, unintended (or not) consequences,
Biased, unreliable and not trustable communications between agent

A-/+ (to be improved)
Decision of NLP is not accurate (see Syslog

payload field)
Difficult cu catch errors/mistakes
Bias in data sets (V&V)
AI literacy, Data literacy



Ready to be Shipped BARCELONA
2025

26

AWS Agents for Bedrock / AgentCore – Build & run enterprise agents with tool/action execution, multi-agent setups, and
production monitoring; AgentCore focuses on getting agents to production at scale. Amazon Web Services, Inc.+3Amazon
Web Services, Inc.+3Amazon Web Services, Inc.+3
Google Vertex AI – Agent Builder / Agent Engine – Managed runtime for agents with sessions, memory bank, built-in tools
(e.g., grounding via Google Search), and evaluation; positioned for multi-agent “experiences.” Google Cloud+1
Microsoft Azure – AI Foundry Agent Service & Microsoft Agent Framework – A unified runtime (and open-source
framework) to orchestrate models, tools, safety, identity, observability; converges earlier work like AutoGen/Semantic
Kernel. Microsoft Learn+2Microsoft Azure+2
Anthropic – Claude “Skills”, Agent SDK, and Multi-Agent Research – Organization-scoped skills
(instructions/scripts/resources) loaded on demand; SDK for building agents; published engineering notes on multi-agent
research flows. Anthropic+2Anthropic+2
OpenAI – AgentKit (DevDay 2025) – Toolkit and SDK for designing, evaluating, and deploying agents with tool calling,
chaining, and multi-agent orchestration; visual builder surfaced at DevDay. Composio+4OpenAI+4OpenAI+4
LangGraph (by LangChain) – Open-source agentic state-machine framework (persistence, streaming, debugging, deploy)
with a clear “workflow vs. agent” distinction; widely used in production demos. LangChain AI+1
Salesforce – Agentforce 360 – Enterprise “agentic stack” tying agents to CRM/Data Cloud/Slack with low-code builder, voice,
and multi-agent orchestration—very much an agentic-enterprise platform. Salesforce Ben+4Salesforce+4Salesforce Investor
Relations+4



Mapping Tools and Skills BARCELONA
2025

27



Mapping Tools and Skills BARCELONA
2025

28



Mapping Tools and Skills BARCELONA
2025

29

How this maps to “agentic” capabilities

Most of the above support, to varying depths:
Tool use & action execution (APIs, RPA-style calls)
Memory/state & sessions (per user/task threads)
Multi-agent orchestration (supervisor/worker patterns)
Grounding & retrieval (search, RAG, enterprise data)
Safety/guardrails & audit (policy, trace logs, identity)

Skill Profiles
Civil engineer
Mechanical engineer
Avionic engineer
Electronic engineer
Software engineer

AI Engineer
Digital engineer
Prompt Engineer
Agentic Framework Engineer
Knowledge engineer
Trust and Alignment Engineer (emerging)
Privacy and compliance Engineer (emerging)



Mapping Tools and Skills BARCELONA
2025

30

Era / Focus Emerging Role Core Competence
Classical physical systems Civil

Mechanical
Avionic
Electronic Engineer Physical laws, design, control

Information systems Software Engineer Code, algorithms, computation
Cognitive systems AI Engineer Model design, learning, inference
Integrated infrastructures Digital Engineer Digitalization, data flows,

interoperability, twins
Human–machine interfaces Prompt Engineer Language mediation, intent structuring,

tool invocation
Autonomous coordination Agentic Framework Engineer m Goal management, multi-agent

reasoning, policy constraints
Knowledge-based synthesis Knowledge Engineer Ontologies, knowledge graphs, reasoning

over structured information
Next evolutionary step →

Trust and Alignment Engineer (or) Ethical Systems Engineer
Value alignment, transparency, bias
management, explainable autonomy,
licensing



Status BARCELONA
2025

31

We are here, Agentic frameworks are here, too!

QUO VADIS?
Rolling up the sleeves!


