TUTORIAL #1

The Anatomy of Agentic
Frameworks and Practical
Use Cases

Speaker
Prof. Dr. Petre Dini, IARIA, USA/EU

Statement: We were all using an Agentic framework, with one small caveat: not based on a natural language narrative
for agent communications, but based on formal rules and well-defined protocols, instead.

Stories: | remember when | was presenting the project requirements and goals, while some people were already starting to write the code.

| recall that with partial accuracy only, we achieved 99.999 service availability across the USA. .

Basis: requirements, players & duties (hardware and software), message flowcharts, hardware selection,
software framework, APIs, Interfaces, user interfaces, etc. [then: verification, validation, assurance)

MODEL
Abstract classes, objects, aggregation, inheritance, object contracts, agents (smart objects), MAS, agentic framework

Keywords of change: automation, self-reasoning, and self-healing

‘Old’ OO (or so) models

> English narrative
> Structured requirements

> Nouns, verbs -> objects, actions, J0als
> 00-framework (IBM: Java, Eclipse}
Framework objects (cca 10%)
Specific objects, operational request
Middleware for object communication
(traders, brokers, hierarchy, etc.)
BUS architecture (event subscription)
Object storage (specific databases:
ObjectStore, etc.)

Formalisms
Verification
Validation
Maintenance
Modeling
Simulation
Monitoring
Management
Reflective
architectures
VS

Digital Twins

‘New’ Agentic frameworks

> English narrative
> Structured requirements
> LLCs identify main requirements

> LLMs identify specific constraints and goals
> Agentic-framework
Framework agents (cca 90%)
Specific agents
Middleware as an agent [Orchestrator]
Communicating Agents (hallucinations, bias)
Agents library 5

30 Years Ago

Bottom-up vs. Top-down

> Event A Layered Processing View
Information +
. . . . Device
Industrial Challenges in Working with Information + p o
Events ~ Domain Manager enriches with Domain advanced correlation
domain information Information o
~ EMS enriches with multi-device < S—
) Prof. Dr. Petre DINI) information » Event B
Senior Technical Leader, NMTG Office » Notification Engine collects OS Information + - 4 o
of the CTO notifications I nflze vice I e
+ rmation N
DEBS 2004 Cisco Systems, Inc. X tmnd—
P . . A normalization
) pdini@cisco.com device - = oo
Edinburg - Event S g et
Information
Log Files, Syslog, MIBs, RMON, etc.
Multi-level diagnostic
Communication Bus T f
Syntax Issues
Dl:'vg;?.:flc advanced diagnostic & corralation
e SEr—— o .
B & romalten by SAomiop of NEs * Various formats
“From aer 058 * v, A, Fouls * by SAand Remote Knasiedge * Myriad of conversions needed
e = Lack of syntax control
e
: parsing
£|‘u ﬁn‘ﬂ; zrwm[m:-k
Events 2 :ulred .l-‘:erﬁus
Lo Files, Syslog, SNMP informs, Level | Diagnosiic Funcions s
CLI commands, ete. (embedded within the NE)

F
—— ==

GODS: Generlc Online Diagnostic Subsystem

Syslog Message “Body” Format in the 10S

* Sep 20 01: 12 3D %SYS O FIG_I. Configured from
C 44.254. T~

Timestamp IOS Component Severity Mnemonic Message-text
:07: OO r er cisco.com 571:(Sep 20 01:12:31: I
%S ONFIG_I: Cojfigured from cons |
(144. 2 9.79)

« NTP is needed! he route
 Header:level can be different than Body:severity

IARTA BARCELONA

/ \ 2025

(Example) Assume
a. We have a paragraphs of ten sentences describing a potential system (irrelevant, but
. selling football tickets, coming with requirements for distribution, security,
authenticity of the tickets, etc.)

b. We opt for using an agentic framework

Q1: What are the sequence of steps?

d. Q2: Are there dedicated agents we should choose from (having definite roles,
limitations, etc.)?

e. Q3:Can we build personalized agents and insert them into the whole framework?

f. Q4. How are the constraints of the original system (requirements) translated into the
goals of the agentic framework and how are the goals assigned to the agents, namely,
are they split (par., seq.) in sub-goals, or joint, or mediated if they are conflicting?

conflicts can be static (easy verifiable) or dynamic (changing, status, volatile, ...)

&

Sport Tickets - Pipeline

Q1 — Sequence of steps (agentic design pipeline)

Requirements - Constraints

Normalize the paragraph into atomic constraints (e.g., “only 6 tickets/user,” “cryptographic authenticity,” “latency < 200 ms,” “fair queueing,” “GDPR
compliance”).

Constraints - Goals (WHAT)

Translate each constraint into one or more goals with acceptance criteria (e.g., VerifyTicketAuth with “<5 ms verify; FIPS-approved crypto”).

Goals - Capabilities (HOW)

For each goal, list capabilities needed: verify signature, allocate inventory, anti-bot scoring, payment, ID verification, audit logging, anomaly detection.
Organization model

Choose agent types and interaction styles: hierarchical (coordinator), market/contract-net, or peer mesh. Define authority, priorities, SLAs.

Allocation
Map goals ¢ agents via: required capability match, trust level, performance budget, and data locality. (Greedy first fit > refine with constraints solver).

Coordination protocols
Pick protocols per interaction: request-response, publish/subscribe, contract-net (bids), two-phase commit, saga (compensations).

Conflict handling
Predefine policies for scarce inventory, double-spend, identity disputes, fairness vs. revenue, security vs. latency. Attach tie-breakers.

Assurance hooks
Add runtime monitors (temporal rules), guard rails (Simplex/shields), provenance logs, and canary scenarios.

Simulation & dry-runs

Load/chaos tests with adversaries (scalpers/bots), failure injection, latency budgets.
Deployment with continuous governance 5

SLAs, rate limits, ABAC/RBAC, rotation of keys/models, drift control, post-mortems.

Sport Tickets - Agents

Q2 — Dedicated agents (typical roles & limits)

= QOrchestrator/Goal Manager: decomposes goals, assigns tasks; limits: no direct data custody.

= |nventory Agent: seat allocation, holds, releases; limits: cannot bypass fairness policy.

= AuthN/Z Agent: KYC/ID checks, RBAC/ABAC decisions; limits: no pricing authority.

= Crypto/Attestation Agent: signing, verification, key rotation, HSM access; limits: read-only to PIL.

= Payment & Risk Agent: PSP integration, fraud scoring, SCA, chargeback handling; limits: cannot allocate seats.

= Anti-Bot/Trust Agent: device fingerprinting, rate-limit advice, CAPTCHA orchestration; limits: advisory - Orchestrator
enforces.

= Queueing/Fairness Agent: virtual lobby, lottery/queue discipline, per-user caps; limits: cannot edit ticket metadata.

= Compliance & Privacy Agent: data minimization, consent, retention, audit trails; veto power on unlawful flows.

= Observability Agent: SLO monitors, tracing, anomaly alerts; limits: no business decisions.

= Settlement & Ledger Agent: immutable log (append-only), refunds, compensations; limits: no user policy changes.

Q3 — Personalized agents
Yes. Define a capability contract (inputs/outputs, pre/post-conditions, latency & trust class), implement your
agent, and register it with the Orchestrator. It can then be selected during allocation if it satisfies:

capabilities 2 goal.regs &% SLA net && policy conpliant && trust | evel ok

IARTA BARCELONA

/ \ 2025

Translating Requirements - Goals - Agents (mini example)

1. Requirements (excerpt) 2. Goals |
R1 Authentic tickets only; cryptographic validation. G1 VerifyTicketAuth (verify <5 ms, FIPS algos).
R2 Max 6 tickets/user; prevent bots. G2 EnforceU_serCaps (s_6/user, per-event).
R3 Fair access at drop time; no cart hoarding. G3 EnsureFairAccess (virtual lobby + lottery/queue).
R4 End-to-end latency < 200 ms. G4 MeetlLatencyBudget (<200 ms, back-pressure).
R5 GDPR compliance; immutable audit. G5 Provenance&Audit (append-only, replayable).
_ G6 AntiBotMitigation (risk score; action ladder).
3. Allocation (sample): G7 PrivacyCompliance (min data, DSR support).
G1 - Crypto/Attestation Agent _ o
G2 - Queueing/Fairness Agent + AuthZ Agent 4. Contlict patterns & policies

Fairness vs. Revenue (R2 vs dynamic pricing): declare lexicographic
priority: safety/security - compliance = fairness - revenue.
Latency vs. Security (R4 vs strong checks): apply progressive trust: light check

G3 - Queueing/Fairness Agent (lottery/queue policy)
G4 - Orchestrator + Observability (shed/back-pressure)

G5 - Settlement & Ledger Agent on hot path; deep check async or on anomalies.
G6 - Anti-Bot/Trust Agent (+ Orchestrator enforcer) User Cap vs. Group Orders: introduce goal refinement: EnforceUserCaps -
G7 - Compliance & Privacy Agent per-identity + per-payment-instrument + per-device.

Anti-Bot false positives vs. Fairness: dual-channel appeal (human-in-the-loop)
with bounded SLA.

IARTA BARCELONA

/ \ 2025

Telehealth triage & e-prescription scenario; agentic coordination under strict safety, privacy, and auditability
constraints

The increasing pressure on healthcare systems to deliver rapid, accurate, and equitable medical responses has
Intensified interest in telehealth triage augmented by intelligent agents. In such settings, patients interact
remotely with Al-assisted services capable of preliminary symptom evaluation, prioritization, and e-
prescription. The incentive lies in creating an agentic ecosystem where distributed digital actors — diagnostic
agents, privacy guardians, audit agents, and prescribing modules — collaborate autonomously yet transparently
to ensure that each clinical and administrative action respects medical ethics, data protection laws, and
accountability standards.

Building this environment demands traceable goal alignment among agents: safety goals constrain diagnostic
decisions, privacy goals regulate data access and transfer, and audit goals enforce non-repudiation and
explainability. The overarching motivation is to design an intelligent, self-monitoring telehealth process that
maintains human oversight while improving timeliness and consistency. From these drivers emerge the system
requirements — for secure reasoning pipelines, consent-aware data flow, verifiable e-prescription issuance, and
adaptive escalation to human clinicians — forming the structural and behavioral blueprint of an agentic
telehealth framework.

/\

IARIA

L\

Translating Requirements - Goals - Agents (mini example)

B1. Requirements (excerpt)

R1 Patient safety first; critical symptoms must escalate to human
within 2 min.

R2 HIPAA privacy; minimum necessary data, consent tracking, audit
logs.

R3 e-Rx authenticity; cryptographic signing + pharmacy verification.
R4 Latency: triage advice < 5 s p95; video intake stable at 30 fps.

R5 Bias control in triage recommendations; explanations required.
R6 Data provenance for training/QA; no raw PHI leaves region.

R7 Fallback: degraded service during outages (phone/SMS, cached

rules).
B3. Agents (roles)

BARCELONA
2025

B2. Goals (what?)

G1 SafeTriage (critical>human <2 min; advice <5 s; explainable).
G2 PrivacyCompliance (HIPAA, consent, minimization, DSR).

G3 AuthEPrescription (sign e-Rx; verify at pharmacy).

G4 MeetLatencyBudget (p95 <5 s; video QoS maintained).

G5 Provenance&Audit (append-only, region-bound).

G6 BiasMonitoring (drift/inequity alarms; periodic fairness reports).
G7 Resilience (graceful degradation path active on SLO breach).

Orchestrator/Goal Manager — decomposes & routes requests, enforces priorities.

Triage Agent — symptom NLP + rules/ML; advisory on severity.

Clinical Safety Agent (Runtime Assurance) — safety authority; escalates to human; Privacy &
Compliance Agent — consent checks, field minimization, policy gate.

e-Rx Crypto Agent — HSM-backed signing/verification, key rotation.

QoS Agent — monitors latency/video metrics; triggers adaptive bitrate/throttling.

Bias & Drift Agent — monitors cohort outcomes; gates model updates.

Provenance/Ledger Agent — immutable logs, regional storage policy.

Fallback/Resilience Agent — activates phone/SMS workflows; caches top rules.

IARTA BARCELONA

/ \ 2025

B4. Allocation (sample): | B6. Example temporal guards
G1 - Triage Agent (advice) + Clinical Safety Agent (escalation |F red flag_detected THEN escalate_to_human WITHIN 120s

decision). IF queue_length > Qmax THEN enable_short_path_triage AND
G2 - Privacy & Compliance Agent (gate on every data flow). alert Ops
G3 - e-Rx Crypto Agent (sign/verify). IF consent.revoked(user) THEN purge non-essential caches

G4 - Orchestrator + QoS Agent (shed load, degrade bitrate). WITHIN 24h
G5 - Provenance/Ledger Agent.
G6 - Bias & Drift Agent (observe-only = periodic reports; veto

G7 - Fallback/Resilience Agent (policy-driven activation). B7. Assurance snapshots

Pre-deployment: spec-based tests
(STL/MTL), failure injection (network,
HSM), PHI leak scanner.

Runtime: monitors + signed decisions to
Ledger; fairness drift alarms weekly;
Simplex-style safety override always on.
Continuous: canary updates; post-
incident reviews tied to provenance.

B5. Conflict patterns & policies

 Latency vs. Safety: If p95 > 5 s, short-path rules activate; Safety Agent keeps
escalation budget <2 min.

* Privacy vs. Explainability: Explanations must not reveal PHI beyond consent;
Compliance Agent redacts.

» Throughput vs. Video QoS: QoS Agent reduces bitrate/resolution before
dropping sessions.

» Model vs. Policy: If Triage suggests “home care” but red flags present, Safety
Agent overrides - human.

Private/ Personalized Agents

Al) Example personalized agent [Health]

Agent name: ProgressiveTrustScorer

Purpose: Score each purchase/session for bot/abuse risk without hurting latency; supports progressive checks
(cheap->costly).

Capability contract (WHAT + SLA):
Inputs: { user_id, device_fingerprint, payment_hash, ip, behavior_signals[], cart_value }
Outputs: { risk_score€]0,1], risk_bande{low,med,high}, actions: {throttle?, challenge?, block?}, rationale[] }

Non-functionals: p95 < 5ms, p99 < 12ms, availability > 99.95%, determinism on same inputs (seeded), no Pl
persistence.

Trust class: Advisory (cannot directly block; Orchestrator enforces).

Policies: No use of prohibited features (e.g., demographics), explainability required (rationale with top 3
features), signed responses.

12

Private/ Personalized Agents

“"name": “ProgressiveTrustScorer”,

"version": "1.2.0",

"inputs": {
"user_id": "uuid",
"device_fingerprint": "string",
“payment_hash": "sha256",
"ip": "ipv4|ipve",
"behavior_signals": "array<float>",
"cart_value": "float"

¥

“"outputs": {
"risk_score": "float[e,1]",
"risk_band": "enum(low,med,high)",

"actions": {"throttle": "bool", "challenge" K "bool", "block": "bool"},

N

"rationale”: “array<string>"

}s
"slas™: {"p95_ms": 5, "p99_ms": 12, "availability": "99.95%"},
"trust_class": "Advisory",

“prohibited_features": [“age","race","religion”,"gender"]

Healthcare- Agents

A2) Avoiding conflicts with the “agent library™

Design-time controls
1.Capability ontology & registry
1. Each agent declares capabilities, pre/post-conditions, trust class, resource

budget. _ . Run-time controls
2. Namespacing: ri sk. trust. progressi ve. v1.Prevents accidental role Arbitration layer in Orchestrator

_overlap. Priority graph: Safety > Compliance > Fairness >

2.Conflict declarations Revenue.

1. Agents state mutual-exclusion or precedence: Rule combiner: (deny-overrides, permit-overrides, first-

1.conflicts_wth: ["risk.trust.static"], applicable).

_ precedence_under: ["queue.fairness"]. Resource quotas & circuit breakers
3.Policy contracts (ABAC/RBAC) Cap CPU/latency; isolate misbehaving agents (bulkhead

1. Who can decide vs. advise. Your new agent stays “advisory” unless governance pattern).

promotes it.

Shadow/canary & auto-revert
New agent runs shadow; if SLOs or policy drift, auto-
disable and alert.

Provenance & explainability bus
All decisions with signatures - Ledger; conflicting
outputs are flagged for adjudication.

4.Static conformance suite
1. Schema validation, SLA proof (bench harness), negative tests (reject PlI, fail
closed).
5.Formal invariants (lightweight)
1. Temporal specs like “never both bl ock and | ow band”; Orchestrator checks at
runtime.

Treat your custom agent as a plugin with a contract.
Declare where it sits in the hierarchy, what it may never do, and how conflicts are arbitrated. 14

Healthcare- Synchronization

Agents' behavior is driven by feedback from the real system (disregard simulation). The events from the system reach the
agents after going up from the physical elements (e.g, CPU, routers) through many levels, and each attaches to the event its
own timestamp (assume they all have a clock); Now, the events reach different agents. What is the mechanism for agent
synchronization?

1. Time Sources and Synchronization Layers
Clock sync protocols:
o NTP (Network Time Protocol) — ms-level sync, good for distributed IT.
o PTP (Precision Time Protocol / IEEE 1588) — us or ns-level sync, used in telecom, finance, avionics.
» GPS-disciplined clocks — absolute reference, often for high-assurance systems.
Local monotonic clocks: Each node uses a monotonic counter (not wall clock) to avoid regressions when NTP shifts.

2. Event Timestamp Strategies

Source timestamping: Events stamped at origin (e.g., NIC, router ASIC, kernel driver). Highest fidelity, but requires hardware
support.

Ingress timestamping: Middleware adds a timestamp on receipt. Easier, but mixes propagation delays.

Hybrid: Keep both (source + ingress) so later agents can reason about uncertainty.

15

Healthcare- Synchronization

3. Event Correlation Mechanisms
Lamport clocks: Logical clocks — give a partial order (“happened before™) without relying on wall time.
Vector clocks: Capture causality in multi-agent settings; more overhead but resolve concurrent vs. causal.

Hybrid logical clocks (HLC): Combine physical time with logical counters — practical for distributed systems like
CockroachDB.

Causal message tagging: Propagate context (e.g., trace IDs in OpenTelemetry) so events can be reassembled in order.

4. Dealing with Clock Drift and Skew

Bounded uncertainty windows: Every timestamp is expressedas[t + &] where 6 is drift + jitter. Agents reason over
intervals, not points.

Temporal logic with slack: Instead of “event A before event B,” you specifyA — B within [0, 50 ns] with
tolerance.

Resequencers / buffers: Small delay queues reorder events by timestamp before passing to reasoning agents.

16

IARTA BARCELONA

/ \ 2025

Syslog limitation: As you noted, fields vary — solution is a normalization gateway that canonicalizes all logs/events into a
shared schema (event tine,i ngest tinme,source_id,uncertainty).

Observability frameworks: OpenTelemetry / Jaeger / Zipkin use trace & span IDs + NTP/PTP to unify timing across layers.
Event bus guarantees: Kafka, Pulsar, etc., ensure ordering per partition; you still need clocks for cross-partition causality.
Complex Event Processing (CEP) engines: They implement “temporal windows” with late-event handling and watermarking.

Each agent sees “causal envelopes” not raw timestamps: e.g., Event (A) @[12: 00: 01. 002 = 3ns].

Orchestrator/Time Service agent normalizes events:
» Aligns clocks (NTP/PTP),
* Canonicalizes timestamp fields,
» Adds provenance (which layer’s clock),
* Issues watermarks (“safe up to T”).

Agents’ reasoning is then expressed in temporal logics with slack (e.g., “if login-failed followed by account-locked within
10s £1s, trigger escalation”)

Synchronization is achieved by global clock sync (NTP/PTP) + event normalization (canonical timestamps) + logical/causal
clocks for ordering + uncertainty windows for safety. In practice, a dedicated “Time/Provenance Agent” often sits in the
architecture to buffer, reorder, and annotate events before downstream agents consume them.

Goals Processing in Agentic Frameworks

1. 52 Starting Point: Original Requirements

In agent-based systems, requirements are usually given as high-level objectives (sometimes vague, sometimes constrained).
Example: “Ensure safe delivery of supplies to location X.”

These are not yet actionable for an agent — they need to be processed into goals.

2. @ Goals Composition
Definition: Combining multiple requirements or subgoals into a coherent higher-level goal.
How it works:
» If two requirements overlap or are interdependent, they may be merged.
e Example: “Deliver supplies” + “Minimize exposure” - Composite goal: Deliver safely while minimizing risk.
Agentic role: Ensures that agents do not treat requirements in isolation but as part of a system of intent.

3. &< Goals Splitting (Decomposition)
Definition: Breaking a complex or abstract goal into manageable subgoals that can be executed by an agent or a group of agents.

How it works:
o Goal “Deliver supplies safely” -
 Plan route selection.
 Avoid hazardous zones.
» Monitor vehicle health.
» Confirm package receipt.
Framework function: Provides hierarchical task networks (HTN) or similar structures where high-level goals -

lower-level operational goals. 18

Goals Processing in Agentic Frameworks

4. |s|Goals Derivation

Definition: Deriving specific goals from general requirements using constraints, context, and reasoning.
How it works:
» Original requirement: “Maintain system stability.”
» Derived goals:
* Keep CPU temperature < 80°C.
* Ensure error rate < 1%.
» Balance resource allocation across processes.

Agentic role: Converts vague mission statements into measurable, actionable, verifiable goals.

5. 88 Conflict Handling

Goal conflicts often arise in multi-goal or multi-agent setups.
* E.g., “Minimize delivery time” vs. “Minimize exposure risk.”

Frameworks resolve this via:

6. 8 Integration in Agentic Frameworks

In practice:

1.Requirement ingestion - agent interprets mission.

. Priority hierarchies. 2.Goals cor_np_osition - build composite obje-ctives.

« Utility-based reasoning. 3.Goals Spll_ttlng —> generate subgoals for action layers.

« Constraint satisfaction. 4.Goals derivation - ground subgoals in specific metrics/constraints.

5.Execution + monitoring = track progress and revise if context changes.

19

Goals Processing in Agentic Frameworks

In summary:

Composition = merging goals into a unified intent.

Splitting = decomposing into smaller subgoals.

Derivation = translating abstract requirements into concrete, operational goals.

Pipeline sequence

Original Requirements - captured as mission objectives.
Goals Composition > merge and align multiple intents.

Goals Splitting - decompose into manageable subgoals.
Goals Derivation - refine into contextual, measurable targets.
Execution & Monitoring - action, feedback, and adaptation.

Q: How do agents decide

- when compose/split/derivate
- who takes the duty

- what about conflicts handling

20

Goals Processing in Agentic Frameworks

1. When to Compose, Split, or Derive Goals
Agents usually rely on triggers and context checks:

Compose goals
» Trigger: multiple incoming requirements overlap, share resources, or are mutually dependent.
» Example: “Collect sensor data” and “Preserve battery life” - compose into “Collect data with minimal energy cost.”
* Mechanism: utility fusion (maximize combined utility subject to constraints).
Split goals
» Trigger: a goal exceeds the agent’s capability or requires sequential/parallel substeps.
» Example: “Deliver package to destination” - navigation + obstacle avoidance + delivery confirmation.
» Mechanism: hierarchical task networks (HTN), recursive decomposition.
Derive goals
» Trigger: vague or abstract requirements need operational grounding.
» Example: “Maintain safety” - concrete thresholds like max temperature, max error rate.
* Mechanism: rules, domain ontologies, or constraint satisfaction.

21

Goals Processing in Agentic Frameworks

2. 8Who Takes the Duty
In multi-agent frameworks, delegation is crucial: 3. 88 Conflict Handling

Capability-based allocation Conflicts arise in two dimensions:

» Each agent maintains a profile (skills, resources, trust level). Between goals (internal to one agent)
» Goals/subgoals are mapped to the agent best able to execute them. . Example: “Minimize time” vs. “Minimize energy use.”

Market- or contract-based allocation « Resolution methods:

» Agents “bid” for goals based on utility/cost (Contract Net Protocol). « Priority ordering (hard-coded or context-sensitive).

* Efficient for distributed coordination. « Multi-objective optimization (Pareto fronts, weighted sums).
Role-based allocation « Meta-reasoning (agent reflects on which goal matters most now).

* Predefined roles (e.g., leader, monitor, executor). Between agents (distributed)

» Subgoals flow to agents with the designated role. .

Example: two UAVs both plan to occupy same air corridor.
» Resolution methods:
» Negotiation protocols (bargaining, mediation).

4. g"’; Integration in Agentic Frameworks Coordination strategies (Swarm consensus, auction allocation).
Most agent frameworks (e.g., BDI: Belief-Desire-Intention) embed this into deliberation ¢ Arbitration (leader or central authority resolves).
cycles:

1.Perceive = environment and requirements.

2.Deliberate - decide composition/splitting/derivation. Forma”){’ this is often mOdeIed o
3.Allocate -> self or other agents. as goal-lifecycle automata with transitions

4.Act - execute subgoals. . .
5.Revise - resolve conflicts, update priorities. trlggered by context and feaSIblllty checks.

Formally, this is often modeled as goal-lifecycle automata with transitions triggered by context
and feasibility checks. 22

Goals Processing in Agentic Frameworks

In summary:
When: composition, splitting, derivation are triggered by complexity, overlap, or vagueness.

Who: allocation follows capability, contracts, or roles.
Conflicts: handled by priority, optimization, or negotiation.

(Goal - {Compose, Split, Derive} - Assign Duty - Resolve Conflicts - Execute)

-> Object-Z / Vienna Method (just to say!)

23

Past Revisited

History revisited (i) History revisited (I1)

- Requirements SLA/SLO specifications

- Requirements tracability UML (semi-formal) specification (another tens, or hundreds)
- Pre-post conditions SDL, LOTOS — protocol formal specifications

- Control policies (Definition/Access Points)

- Agent contract agreements Patterns Catalogues

Policy Formal Definitions/Frameworks (type, actions, guarantees)

- SLA/SLO agreement e _

- Formal specification of interactions (V&V) Activities: actions, plans (par. & seq., actions, temporal aspects,
- (Formal Robust Protocols) conflicts, mitigation, etc.)

- Unique standard framework (s) (Eclipse, as an example) Versioning control (configuration mgmt)

- Patterns, Artefacts, Software reuse Support for Legacy systems

- Customized (embedded) agents 1 99,999 service availability

- Formal agent communication (trusted exchanges)

Q; Status quo
Design time consuming
Limited knowledge (of some, all)

Formal Methodologies
Rebecca Wirfs-Brock - Responsibility-Driven Design (RDD) (OOPSA 1989+)
Bertrand Meyer - Design by Contract (DbC) - Eiffel programming language (~ 1986 +)

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Human-depending productivity

with a foreword by Grady Booch: - Design Patterns (reusable elements) (OOPSLA, 1994) High skilled experts (cost)

Agents Long learning curve

AT&T - Monitoring and Management system had ~ 600 specialized agents (~2000) Poor code documentation / manuals
Cisco Systems - inside each router (~50 agents, fault, performance, etc.) 24

ODP (1990 - Trader - formal definition), CORBA (1990 Broker - SDL specifications), TINA, etc. (Manager) --- > Agentic (Orchestrator).

Discussion

BACK TO AGENTIC FRAMEWORK (again LLMs/LCMs and some standard agents)
Q: Status quo

Design time consuming A+

Limited knowledge Quick design (more than Agile approach)

Human-depending productivity Prompt information at large scale [caveat-pre-knowledge is needed]
High skilled experts (cost) Automation-based productivity (less human workforceO

Long learning curve Min high skilled exerts (prompt experts and tools knowledgeable)
Poor (code) documentation / product manuals Long learning curve (almost instant; see prerequisites)

Instant generation of documentation / manuals

A- (to be improved)

Deskilling

Highly depending on a few individuals

Lack of or not at a required level of Explainability, Ethics(Opaqueness)
Uncontrolled bias (European Act, USA)

Great ROI (for some)

Unreliable information (hallucinations, unintended (or not) consequences,
Biased, unreliable and not trustable communications between agent 25

A-/+ (to be improved)

Decision of NLP is not accurate (see Syslog
payload field)

Difficult cu catch errors/mistakes

Bias in data sets (V&V)

Al literacy, Data literacy

IARTA BARCELONA

/ \ 2025

AWS Agents for Bedrock / AgentCore — Build & run enterprise agents with tool/action execution, multi-agent setups, and
production monitoring; AgentCore focuses on getting agents to production at scale. Amazon Web Services, Inc.+3Amazon
Web Services, Inc.+3Amazon Web Services, Inc.+3

Google Vertex Al — Agent Builder / Agent Engine — Managed runtime for agents with sessions, memory bank, built-in tools
(e.g., grounding via Google Search), and evaluation; positioned for multi-agent “experiences.” Google Cloud+1

Microsoft Azure — Al Foundry Agent Service & Microsoft Agent Framewaork — A unified runtime (and open-source
framework) to orchestrate models, tools, safety, identity, observability; converges earlier work like AutoGen/Semantic
Kernel. Microsoft Learn+2Microsoft Azure+2

Anthropic — Claude “Skills”, Agent SDK, and Multi-Agent Research — Organization-scoped skills
(instructions/scripts/resources) loaded on demand; SDK for building agents; published engineering notes on multi-agent
research flows. Anthropic+2Anthropic+2

OpenAl — AgentKit (DevDay 2025) — Toolkit and SDK for designing, evaluating, and deploying agents with tool calling,
chaining, and multi-agent orchestration; visual builder surfaced at DevDay. Composio+40penAl+40penAl+4

LangGraph (by LangChain) — Open-source agentic state-machine framework (persistence, streaming, debugging, deploy)
with a clear “workflow vs. agent” distinction; widely used in production demos. LangChain Al+1

Salesforce — Agentforce 360 — Enterprise “agentic stack” tying agents to CRM/Data Cloud/Slack with low-code builder, voice,
and multi-agent orchestration—very much an agentic-enterprise platform. Salesforce Ben+4Salesforce+4Salesforce Investor
Relations+4

26

Mapping Tools and Skills

Platform Security controls (PHI/PIll) Auditability Multi-agent patterns Evals / guardrails Cost levers Healthcare fit (quick take)

IAM, VPC, KMS at-

. . Native policy
rest/in-transit;
ion isolation; Tool/action execution controls; Pay per Strong: mature
:;ss'o: 'sc:nith " CloudTrail traces; l Hine tasks: ' combine with model/runtime; denti .In workin
integrates) AWS Audit ong-running tas . Bedrock reuse existing icentity e orking,
AWS AWS compliance M partners show multi- rdrails: AWS ing & clear audit paths; good
Bedrock - stack (BAA eligible l:nager o agent via iuam:al ! n orking for PHI with BAA on
nment for ri
AgentCore via AWS services). alignment fo LangGraph+Bedrock. eattheare security underlying services.
controls. AWS) log investments.)
Amazon Web) Amazon Web Services, Amazon Web Services,
Documentation examples. Amazon Web
Services, Inc. . Inc.
Amazon Web Services, Inc.
Inc.+2Amazon Web .
Services, Inc.
Services, Inc.+2
Runs on Google “Agent” runtime with Strong: good
N _El Cloud logging; Ae X un .I Google Vertex per-use + g &
Google Cloud security terori sessions, grounding; Is ding: GCP inf compliance posture
Vertex Al baseline; HIPAA en) r_p"se multi-agent eva_ eroundiing inira on GCP; check BAA
A policies across) policy & data controls (net/storage) p "
.gent program Vertex stack. sxpenences documented. Google pricing. Google scopa for apecilic
Builder available on GCP. emerging. Cloud Cloud services you enable.
Google Cloud
Google Cloud+1 latenode.com Google Cloud
Strong: identity +
Microsoft Azure security/identity; Centralized Converges Responsible-Al Azure com :;nce i
HIPAA/BAA available monitoring & SK/AutoGen P P
Azure - Al i i] . features; consumption + depth; good
across eligible services; logging under lineage into]) .
Foundry) enterprise policy model/runtime SSO/tenant
documented data- Azure; enterprise managed agent))
Agent handling for “Azure Direct audit toolchain ntim controls. costs. isolation story for
Service a glo ure birect au colchain. u e Microsoft Learn latenode.com PHI. Microsoft

Models.” Microsoft Learn latenode.com latenode.com 27

Mapping Tools and Skills

Enterprise c ble “skills”™ Model+ Good: great for
. workspace Console & SDK omposs K Safety focus; ode . controlled
Anthropic - . i = modular agent . enterprise o i
controls; skills are surfacing L i guidance for . capabilities; pair
Claude 4 ing/steps: capabilities; aligns stabl plans; skills ith cloud runti
“Skills” & °""’:°‘f° - ""‘sf’“':d k‘_’l'l':' with multi- :"’; T’ © reduce bespoke ::1 . © °”_d runtime
AgentSDK T Pnasis o'} sate versien) Swis: agent/task routing. OO. 19T dev overhead. @ pmw_ es
code execution. Tom's Guide . Guide BAA/logging. The
The Verge+1 Verge
OpenAl - Enterprise controls via Integrated evals Good: strong evals;
. Built-in Visual multi-agent Platform + eval
AgentKit/ Connector (datasets, trace . o confirm PHI/BAA
) traces/step canvas + SDK; tool] infra pricing; faster
Agent Registry/admin panel; i i grading, auto i i posture for your
. grading for calling and iteration lowers
Builder security posture A prompt) deployment path
(DevD highlighted at launch agents. orchestration. timization) total build cost. before handling l
evDay i e unch. optimization). efore handling live
'25) OpenAl+1 * OpenAl+1 : . patient data. OpenAl
o . Excellentas a
penjsource, . Guardrails via Infra-only (open- control plane when
security depends i) Agentic state- i i
) Tracing/debugging) . ecosystem, source); pay for combined with a
LangGraph on hosting (often built in; full audit machine with deterministic models/compute HIPAA-eligible cloud
__ paired with) t branching/loops;)
(LangChain) Bedrock/Azure) via your infra logs. clean multi-agent control via where deployed. (e.g.,
: Sider) e graph/state. Amazon Web AWS/GCP/Azure).
Amazon Web hand-offs. Sider . .
Servi Inc.+1 Sider Services, Inc. Amazon Web
ervices, Inc. -
Services, Inc.
Salesforce — Built for enterprise trust/compliance; Deep audit trails within Multi-agent orchestration across
materials cite HIPAA support & PHI masking, Salesforce platform; governed CRM/Slack/Data Cloud. Salesforce
Agentforce 360

governance. Salesforce+1 data access. Salesforce Investor Relations 28

Mapping Tools and Skills

How this maps to “agentic” capabilities

Most of the above support, to varying depths:

Tool use & action execution (APIs, RPA-style calls)

Memory/state & sessions (per user/task threads) Skill Profiles
Multi-agent orchestration (supervisor/worker patterns) ~ Civil engineer
Grounding & retrieval (search, RAG, enterprise data) Mechanical engineer
Safety/guardrails & audit (policy, trace logs, identity) Avionic engineer

Electronic engineer
Software engineer
Al Engineer
Digital engineer
Prompt Engineer
Agentic Framework Engineer
Knowledge engineer
Trust and Alignment Engineer (emerging)

Privacy and compliance Engineer (emerging)
29

Mapping Tools and Skills

Era / Focus Emerging Role Core Competence
Classical physical systems Civil
Mechanical
Avionic
Electronic Engineer Physical laws, design, control
Information systems Software Engineer Code, algorithms, computation
Cognitive systems Al Engineer Model design, learning, inference
Integrated infrastructures Digital Engineer Digitalization, data flows,
interoperability, twins
Human-machine interfaces Prompt Engineer Language mediation, intent structuring,
tool invocation
Autonomous coordination Agentic Framework Engineer m Goal management, multi-agent
reasoning, policy constraints
Knowledge-based synthesis Knowledge Engineer Ontologies, knowledge graphs, reasoning

over structured information
Next evolutionary step -
Trust and Alignment Engineer (or) Ethical Systems Engineer
Value alignment, transparency, bias
management, explainable autonomy,
licensing

Status

We are here, Agentic frameworks are here, too!

QUO VADIS?
Rolling up the sleeves!

31

