
Secure Software
Development

Aspen Olmsted, Ph.D.

Associate Professor

About Aspen

• Work in Software Development for 35+ years

• Designed and Launched NYU Cyber Fellows Program

• Designed and Launched NYU MicroBachelors Programs

• Managed Certification of Several Universities’ CAE programs

• Associate Professor at Wentworth Institute of Technology

• Author of Security-Driven Software Development

• Adjunct Professor in NYU Cyber Fellows

• Expert Witness for Software Development Cases

https://www.linkedin.com/in/aspeno/

1

• Software Security

• Software Development Lifecycles

• Functional Model

• Object Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

2

Agenda

Software Security

• Set of development practices that protect:

• Software itself

• The data processed by the software

• The network communications

• Not just Malicious Users

3

• Security

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

4

Agenda

• There are many SDLCs used to develop software

• We will think about four SDLCs
• Waterfall

• Agile

• DevOps

• Microsoft Security Development Lifecycle

5

Software Development Lifecycles

• Well Defined Steps

• Problems may not be discovered until late in the process

• Finished Product

6

Waterfall

• No concept of finished product

• One model uses Scrum

• Work put into sprints

7

Agile

• Incremental updates

• Automation of phases

8

DevOps

• Security Steps Added to Phases

• Training and Response

9

Microsoft Security Development Lifecycle

Our Methodology

• More Security Modeling in Distinct Phases

• Closer to the Code

• Automated Code Injection for Mitigation

10

Our Methodology

11

Phase Security Models/Tools

Functional Model Non-Functional Requirements/Misuse
Scenarios/Cases

Object Model OCL Constraints/Stereo Types

Dynamic/System Model OCL Pre & Post Constrains/Stereo
Types/Patterns

Threat Model STRIDE/DREAD/PERT Models

Implementation Training on Know Web Security

Verification Unit/Integration/System Tests

Penetration Testing Automated System Scans

• Security

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

12

Agenda

Functional Model

• A model is a simplification

• Output is
• Functional Requirements
• Non-Functional Requirements
• Constraints

• Tools
• List
• Textual Scenarios
• Textual Use-Cases
• Graphical Use-Cases

13

• Textual Mis-Scenarios
• Textual Misuse Cases
• Graphical MisUse-Cases

Example Requirements for Event Ticketing Application

14

Functional Requirements Non-Functional Requirements Constraints

Must allow self service purchases Must support 50,000 concurrent
users

Patron should be able to use an
Android phone

Must allow basket of multiple
events

Must send e-tickets within 5
minutes of transaction completion

E-tickets must be in pdf format

Venue should be able to control
maximum number of tickets per
event

Return users must authenticate to
reuse previous payment type

Venue should be able to control
available payment types

Example Misuse Scenario

• Henrietta the Hacker creates several new emails to allow her to purchase more than the allowed tickets.
Between each order she uses the browser incognito feature to not have any cookies from previous transaction

15

Misuse Cases

• Use and misuse cases are used to validate
understanding

• Multiple scenarios are rolled up into generic textual
use case and graphical use case models

• Multiple misuse scenarios are rolled up into generic
textual misuse case and graphical misuse case
models

16

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

17

Agenda

Object Model

• Output is
• Object Design

• OCL Constraints

• Tools
• UML Class Diagrams

• OCL Constraints

18

UML Class Diagrams

19

Represents the internal structure of an
application

Object Constraint Language (OCL)

Examples

Constraint OCL Equivalent

The age of a person is not negative. context Person inv: self.age >=0

A person is younger than its parents.
context Person inv: self.parents-
>forAll(p|p.age>self.age)

After a birthday, a person becomes one year older.
context Person::hasBirthday() post:
self.age=self.age@pre+1

A Person has 2 parents at max. context Person inv: self.parents->size()<=2

After somebody has a child, his/her child-set is not
empty, and it is larger than before.

context Person::getsChild() post: self.childs-
>notEmpty() and self.childs->size() > self.childs@pre-
>size()

Only an adult can be owner of a car.
context Person inv: self.age<18 implies self.cars-
>isEmpty()

The first registration of a car can not be before it is
built.

context Auto inv:
self.registration>=self.constructionYear

Every Person that has a car has at least one car which
is younger than the Person.

context Person inv: self.cars-
>notEmpty() implies self.cars->exists(c
| Calendar.YEAR - c.constructionYear < self.age)

Nobody can be his/her own parent. context Person inv: self.parents->excludes(self)

There's at least one Person which owns a car.
context Person inv: Person.allInstances()->exists(p |
p.cars->size() > 0)

20

• Rule-based Language to Specify Correctness

Stereotypes

• Add meaning to UML entities and attributes

21

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

22

Agenda

Dynamic Model

• Output is
• Methods

• OCL Pre/Post Constraints

• Synchronous vs Asynchronous Messages

• Tools
• UML State Charts

• UML Communication Diagrams

• UML Sequence Diagrams

23

Sequence Diagrams

• Can use Stereotypes on Classes, Lifelines, Messages

• OCL Pre and Post Conditions on Messages

• Arrows represent Synchronous vs Asynchronous

24

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

25

Agenda

System Model

• Output is
• System Partitions

• Patterns

• Pre/Post Constraints

• Tools
• UML Sequence Diagrams

• UML Activity Diagrams

• OCL Constraints

26

Activity Diagram

• Can use Stereotypes on Activities,
Messages

• OCL Pre and Post Conditions on
Messages

27

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

28

Agenda

Stride Model Threat Breakdown.
Threat Desired Property

Spoofing Authenticity

Tampering Integrity

Repudiation Non-repudiability

Information disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

The STRIDE model is an approach to threat modeling to
identify potential vulnerabilities and threats

Example Stride Model

Function S T R I D E

Login X X X X X X

Event Selection X

Seat Selection X X

Payment X X X X

Print at Home X X X

Other Models

• DREAD – Similar to STRIDE but uses quantitative value

• Damage: Understand the potential damage a particular threat is capable of causing.

• Reproducibility: Identify how easy it is to replicate an attack.

• Exploitability: Analyze the system’s vulnerabilities to ascertain susceptibility to cyberattacks.

• Affected Users: Calculate how many users would be affected by a cyberattack.

• Discoverability: Determine how easy it is to discover vulnerable points in the system infrastructure.

• PERT – Distributed System Model

• Partition – Vulnerable to network partition failure

• Execution – Vulnerable to execution failure

• Requisite – Vulnerable to previous action failure

• Time – Vulnerable to execution timing

31

Other Models

• CRIRTA – Threat Modeling for Systems for Database Systems

• Reproducibility: Identify how easy it is to replicate an attack.

• Exploitability: Analyze the system’s vulnerabilities to ascertain susceptibility to cyberattacks.

• Affected Users: Calculate how many users would be affected by a cyberattack.

• Discoverability: Determine how easy it is to discover vulnerable points in the system infrastructure.

• BIRFS – Threat Modeling for Systems that utilize AI/ML Algorithms

• B- potential biases in output

• I - input is outside the domain of control.

• R - output result does not deviate from a reasonable range

• F - forensics or logging to defend results

• S - Sensitive or private data needs to be protected

32

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

33

Agenda

Mitigation Strategies

• Some standard mitigation strategies

• Logging

• Redundancy

• Authentication

• Authorization

• Can be added as stereo types in earlier models

• Could can be generated from XMI or similar version of model

34

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

35

Agenda

Implementation

• Train on standard web vulnerabilities

• OWASP TOP 10

• SQL Injection

• Command Injection

• XSS

• Request Forgery

36

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

37

Agenda

Test Types

• Unit Tests – Test classes, methods

• Integration Tests – Test subsystems with Mocks and Stubbs

• Regression Tests – Test non-functional requirements

• System Tests - Test functional requirements

38

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

39

Agenda

Penetration Testing

• Should be performed by separate team from developers

• Output – Report

• Tools

• Open-source intelligence

• Nikita – Open-Source scanner for known vulnerabilities

• Vega – Open-Source web scanner that can run as proxy or scanner

40

Questions?

41

