

Theme Health and Digital Services

Topics: Trust, Accessibility, Cross-border health data governance, Patient-centered digital ecosystems.

Keywords: Digital health, Telemedicine / remote monitoring, Interoperability and data sharing, Al diagnostics and precision medicine, Health data privacy and ethics, Digital inclusion in healthcare

PANEL #1

Moderator

Dr. Jamie McGlothlin, RSM US LLP, USA

Panelists

Dr. Thomas Michelitsch, Sorbonne Université, CNRS, France Dr. Francisco Javier Bermúdez Ruiz, University of Murcia, Spain Prof. Dr-Ing. Kristina Schaaff, IU International University of Applied Prof. Dr. Petre Dini, IARIA, USA/EU

Dr. Mehluli Masuku, Sorbonne University Abu Dhabi, UAE (United Arab Emirates)

BARCELONA 2025

AI: Efficient use of resources, Process optimization, Cost reduction, Waste reduction

Patient Experience: Improves outcomes and margins

Health Equity: Diversity is our strength, it is not just about being "color blind"

Cloud Computing: Access to more data and information

Data virtualization

We have too many tools and too much data

Must give simple information at the right time

Alert fatigue reduces quality of care

Jamie McGlothlin RSM USA

BARCELONA 2025

Modelers perspective (prevention of epidemic spreading)

- Al may help for diagnostics to identify diseases (cancer, ..) blood tests, etc.
- Digitalization cannot replace direct contact patient medical doctors
- Health Equity (HE) is essential in prevention of epidemics, insufficient HE may boost spreading (remember COVID-19)

Important is to remove obstacles such as poverty that prevent access to health services

- AI may help to identify weaknesses in a Health System (HS)
- Close interaction of modelers and deciders in HS is important to avoid fatal delays in taking prevention measures
- Digitalization is inalienable, but cannot make the job alone without close supervision
- Outcomes of models may lead to suggestions of improvements in prevention of epidemics
- → Possible improvement of health and digital services

Thomas M. Michelitsch,
Senior Scientist
Institut Jean le Rond
d'Alembert
CNRS/Sorbonne Université

BARCELONA 2025

- Development, evaluation and implementation of computer systems for clinical decision support
 - Business intelligence techniques + rule-based inference engine to integrate data and knowledge
 - → Alert, recommendations, and global surveillance
- Computerized clinical guidelines and clinical process flow modeling, and tools for information visualization in hospitals
- Data interoperability, clinical standards and process models (such as HL7, FHIR, SNOMED CT, OMOP, and BPM), to visualize massive clinical data

Prof. Dr. Francisco Javier Bermúdez Ruiz MedAlLab Research Group Computer Science Faculty University of Murcia, Spain

BARCELONA 2025

- Development of AI systems should not only include technical innovation but also the social and emotional components
- Integration of empathy can enhance human-machine interaction
- Affective computing introduces new pathways for humanmachine interaction, presenting both opportunities and ethical risks

Kristina Schaaff
IU International
University of
Applied Sciences

BARCELONA 2025

- Cross border legal interoperability improves patient care
 - Patients are mobile, moving from one country to another. However, their data is not easily shareable due to incompatible legal provisions between countries across the world.
 - Different countries have different legal data requirements for personal data.
 - Patient health data that is not easily integrated into patient systems across borders is likely to fall into the cracks, and eventually lost, creating gaps in patient histories.
 - Legal interoperability can reduce the fragmentation of patient data between across borders.

Mehluli Masuku Sorbonne University Abu Dhabi

BARCELONA 2025

 Whilst technical interoperability of health data can easily be overcome be overcome through messaging and terminology standards, cross border legal interoperability (compatibility between health data laws) remains a challenge.

Mehluli Masuku Sorbonne University Abu Dhabi

- Cross border legal interoperability of patient data challenges are further complicated by the sensitive nature of patient health data (sensitive personal data), coupled with personal data protection laws, e.g., GDPR, and country-specific data protection and health data laws.
- There is a need to improve and promote cross border patient data exchange for seamless patient care across border, albeit within the realms of patient privacy

BARCELONA 2025

 How can legal interoperability of patient health data across borders be improved whilst propagating patient privacy and respect for data protection laws?

BARCELONA 2025

Image: Vision, Position, Muscles, Bones,

Drugs discovering

Situation monitoring

Interactive toys: Mental disorders, mental healing etc.

Help for vulnerable classes: Young pupils, children, older adults, etc.

Rehabilitation tools (Immersion, Virtual reality)

Petre Dini IARIA, USA/EU

Body: Vision, Position, Muscles, Bones,

Brain (cognition): Sensory interpretation, adaptive real-immersive hysteresis, induced hallucinations, etc.

(physical): Electromagnetic waves (nanoA -10^-9 A -, ..., NanoV, ..., nSeconds)

Habit: Squared instead of natural, digital guidelines vs human guidelines, addictive, etc.

Digital stress: Mental disorders. digital addiction, digital dependency, etc.

Vulnerable classes: Young pupils, children, older adults, etc.

BARCELONA 2025

Immersive Literacy

- Environmental Remanence (Real vs Virtual)
- Co-evolving with Technologies
- The power of Augmented Reality and Immersion (from acceptance to use)

Personalized Cognitive Assistance

- Cognitive Rehabilitation
- Elderly Cognitive Support
- Learning Disabilities

Challenges

- Adaptive algorithms (Interactive Content, Feedback mechanisms)
- Accessibility (Individuals in low-resource settings or with severe disabilities)
- Privacy and Ethics (Safeguarding the sensitive data collected from users)

(Hidden) Side effects

- Spatial deskilling (individuals lose their ability to perform spatial tasks)
- Real-Virtual Cognitive Mismatch (reduced transfer of skills and knowledge from virtual to real settings)
- Immersion Dependency

Body Health impact

- Impact on Vision
- Impact on Mental status
- Impact on the Backbone
- Impact on Hands, Wrists, and Fingers
- Impacts on Rest, Leisure, and Well-Bein

Dependency on Immersive Environments

Several ways (sensory disorientation, social interactions, cognitive overhead)

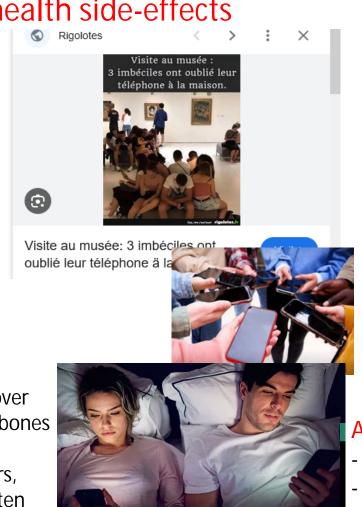
From Immersive to Real Environments (sensory readaptation, isolation, decisions)

From Real to Immersive Environments

(overstimulation, confusion, escapism) 11

Body & Habit

BARCELONA 2025


Addiction and health side-effects

Text neck

Smartphone finger

Each hand is made of 27 bones, 35 muscles, and over 100 tendons connecting bones and muscles. Your flexor tendons bend your fingers, and tendons that straighten your fingers are called extensor tendons.

Adversities

- Becoming Mentally Lazy

Light emitted from your mobile device's screen might just be messing up your sleep cycle

It might affect vision (in progress studies)

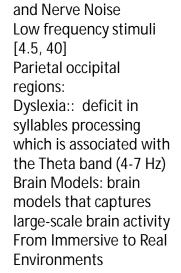
Cognitive dependency

BARCELONA 2025

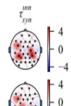
- **Dependency on Immersive Environments**
- Several ways (sensory disorientation, social interactions, cognitive overhead)
- From Immersive to Real Environments (sensory readaptation, isolation, decisions)
- From Real to Immersive Environments (overstimulation, confusion, escapism)

Panelist Position

Google Maps getting major upgrade thanks to new trend taking world by



capacity to decode rhythmic cues in speech, a function primarily supported by activity in the theta frequency band. According to the Temporal Sampling Framework, impairments in this process may contribute to the phonological deficits observed in individuals with Developmental Dyslexia (DD). These challenges cascade into higher-frequency bands, affecting the integration of phonemes, words, and phrases, ultimately compromising reading and writing fluency. Early diagnosis and treatment are crucial for ensuring proper personal and academic development in children. In this study, we propose a non-invasive methodology that combines ElectroEncephaloGraphy (EEG) data with a surrogate modelling framework to detect early imbalances in Excitation/Inhibition (E/I) mechanisms. We applied this methodology to a cohort of children, divided into 3D with Imm controls and DD groups, and compared the inferred E/I mechanisms with patterns predicted by the neural noise hypothesis. We found that the results obtained using this framework align with both the Temporal Sampling Framework and the Neural Noise Hypothesis.


Abstract- Effective language processing relies on the brain's

Developmental Dyslexia

Petre Dini IARIA, USA/EU

Increase in E/I in parietal and frontal regions -> Neural Noise Hypothesis in Dyslexia

Increment of τ_{syn1} in frontal and parietal-central for 4.8 Hz. Significant differences decreases as stimuli increases.

Delayed responses of inhibitory currents due to increment of $\tau_{\text{syn I}}$ also aligns with Neural Noise Hypothesis in Dyslexia.

THE STAGE IS YOURS