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Goal: Use Al to automate 2~3X more-efficient solar-thermal technologies
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(b) High-efficiency tech works to maximize

(a) Desert deployment does not need to pay for
energy from limited space (e.g. rooftops).

advanced, high-efficiency technology.

Figure: Al enables optimal placement of advanced tech by overcoming traditional control barriers.
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Abstract

Modern energy infrastructures exhibit complex spatiotemporal dynamics across thermal, mass, and
electrical domains. We propose a unified framework that:

@ Compresses multi-layer graphs into a single effective flow network
@ Applies DCRNN for one-step-ahead node state prediction
@ Integrates MARL for actuator control optimization

This approach balances physical fidelity with computational tractability and supports real-time
regulation in operational energy systems.

Lee & Constantinides (HedgeSPA & Imperial College) Energy Modeling via MARL and DCRNN October 2025 4/28



Preprint
Being processed by MDPI Information (IF 2.4, CiteScore 6.9) for its forthcoming Special Issue:
“Applications of Information Extraction, Knowledge Graphs, and Large Language Models”

01010 =

01010

[RER information r;‘\D'\P,',J
Article

Predictive Modeling of Energy Production and Graph
Compression via MARL and DCRNN

W. Bernard Lee ! and Anthony G. Constantinides *

' HedgeSPA Private Limited, 12 Woodlands Square #15-71), Singapore, 737715; bernard leshedgespa.com
Al and Data Analytics Labaratory, Imperial College London, London, UK SW7 2AZ;
aconstantinidesimperialac.uk

Abstract

Modern energy infrastructures—from thermal power plants and combined-cycle units to
microgrids and biomass-integrated renewables—exhibit complex spatioternporal dynamics.
WVariables such as temperature, pressure, viscosity, mass flow rate, and electrical load
propagate through networks of pipes, heat exchangers, turbines, and transmission lines,
which can be naturally modeled as layered graphs. Real-time forecasting and coordinated
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Motivation

@ Traditional PDE-based models are accurate but hard to scale
@ Energy systems are heterogeneous and topology evolves frequently
@ Data-driven graph models offer flexibility but face:
© Multi-layer graph complexity
@ Long-range temporal dependencies
© Non-stationary operating regimes
@ Practically, this represents a significant and ambitious undertaking:

@ Several governments have expressed formal interest in deployment

@ UK has committed to providing access to a designated test site at a symbolic rental rate,
alongside support for establishing an R&D center at Bayes Centre, Univ of Edinburgh

© A Special Purpose Vehicle (SPV) is being structured to consolidate assets and enable
scalable investment
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Design Principles

@ This is based on layered graphs (e.g. thermal, mass, electrical, etc.); compressed into a
single directed graph based on energy flow

@ Use DCRNN (initially developed at Caltech for controlling traffic flows in LA) to forecast
next-step node states

@ Close the loop with MARL agents (used in manufacturing to control overflows) using
learned forecasts

This preserves locality, reduces memory, and enables fast policy improvement.

I —
Primary Circuit Pump
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Background Research

@ Multi-Agent Reinforcement Learning (MARL)
> Agents interact with environment to maximize expected return
MARL settings: Dec-POMDPs, CTDE
Coordination via mixing networks, shared critics, communication
Applied to edge computing and industrial control, so it is a natural fit with energy systems
Rewards reflect efficiency, stability, and safety

@ Diffusion Convolutional RNN (DCRNN)

» Combines graph diffusion with GRUs

Models directional transport via biased random walks
Learns spatiotemporal signal propagation

Proven effective in traffic and recommendation systems
Physically consistent for heat and mass flow modeling

v vy VvYy

v vy VvYy
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Problem Formulation

Graph: G = (V E,A), with compressed adjacency A
Node state: xt [T(),qg),pg), -]

System dynamics: Xey1 = (X, ur; G) + &4
Objectives:

» Forecast X;1 from history
» Compute control u; minimizing stage cost or maximum total output objective

Energy Transfer Approximation: Local energy balance given by:

Elgi) _ m(i)CpTlSi), - ZO‘ q(Hl) T(J) t(i)) _ ﬂ(i)(-,-t(i) — Tamb) Jr,Y(i)ugi)

» «j;: directional coupling
» [0): energy loss coefficient
> 7(’)u£'): actuation input
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Graph Compression Strategy

o Aggregate multi-layer graphs into one:

Ajj = > wp - ¢z(Aff))

£e{thermal, mass, electrical}

@ Optional learned correction:
A*=A+AA  |AAL <A

@ Preserves topology and directionality
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DCRNN for One-Step Forecasting

@ Combines diffusion convolution with GRU architecture
@ Predicts next-step node states X;11 from current state and control

@ Enables conditional forecasting with control-aware dynamics

Diffusion Convolution: GRU Integration:
Given row—ngrmalized transition matrices Embed diffusion convolution in GRU:
D1A and D='AT, the K-step bidirectional _
diffusion convolution is: Z; = o(DiffConv([ Xy, Us] )W, + H;—1R; + b,)
p R: = o(DiffConv([X¢, U)W, + Hi—1R, + b;)
DiffConv(X) =Y _ DA X0+ A, = tanh(DiffConv([X:, Us]) Wi, + (R: ® He_1)Rp + bp)
k=0 Ht: (l—Zt)@Ht—1+Zt®I:It

Dfl(AT)kXes(b)
Final prediction: X;11 = H:W, + b,
Captures anisotropic transport aligned with
physical flow and supports directional
modeling in energy networks
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Forecasting Objective and MARL Control

Loss and Training Objective MARL Control with One-Step Horizon
@ Each actuator node / € U is assigned an
Lforecast = Z ”X;Tf - Xfﬁd”l + 77||AA||1 agent
t @ Observes local and neighborhood states:
+ p>_;max(0, —A%) Ogi) = Y(X¢, N(i; G))
@ Uses DCRNN as learned transition model for

@ L1 loss for robustness to outliers .
planning

@ Penalizes self-loops and encourages sparsity
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Reward Shaping and Bellman Update

Reward Shaping Bellman Equation with DCRNN

; . 2
@ Actuation cost: —\,||u||5 Qe te) = Fi + 1B, [V(se11)],

. . 2
® Smoothness: —Aalue — ueaf2 Ses1 = Enc(Xep1) = Enc(DCRNN(X:, ur))

@ Tracking:
@ Reduces compounding model error

Z W-,— t+1 r(;f))Q @ Stabilizes training with one-step lookahead

- D(ijyec W ’J)(QtHJ qfe’f_>J))
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CTDE and One-Step Forecasting Power

Centralized Training, Decentralized One-Step Forecasting Power
Execution (CTDE)

@ Centralized critic Q(s, u) trained with joint Xewn = AXe+ Bute e, p(A) <1

rollouts
@ DCRNN learns local Jacobians via diffusion

@ Each agent executes local policy () (a|o(?) kernels

@ Optional parameter sharing and neighbor °

par Bellman backups over one step sufficient for
communication

greedy policy improvement

@ Prevents error accumulation over long
rollouts
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Valve Dynamics and Safety Constraints

Valve Control and Energy Flow Safety and Constraints
® Mass flow: qEHJ) g(UEHj)) @ Temperature bounds: Tr(rfi)n < Tt(i) < T4
@ Pressure drop: Apgi’j) ~ k\(,Hj)ugHj)Apfb"’j) @ Control bounds: 0 < ug") <1
@ Heat transfer: o Flow limits: Y2, q{' ™ < gk
QU — gl e (1) — 70y @ Smoothness: |Aul’| < 4,

@ Training: penalize violations with barrier

@ Temperature update: terms

@ Execution: project actions onto feasible set

. . / (K N
7_t(JJr)l - T’-‘U)+ (J)c <Z Qt+_1ﬂ - Z Qz&_l) = h(J)A(J)(Tt(J) — Tamb)
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Integrated Algorithm Overview

@ Graph Compression

» Input: Layered adjacencies A(), physical metadata

» Output: Effective directed adjacency A*
@ DCRNN Training

» Data: Sequences (Xi—ky1:¢, Up—k+1:¢) — Xet1

» Objective: Minimize Lorecast; €arly stopping on validation
@ Critic and Policy Training (CTDE)

> Target: yr = r(se, U, Sev1) + v Vo(st+1)

» Critic: Minimize (Qy(st, ur) — yr)?

» Policy: Maximize Qy(s¢, m4(0¢)) with entropy regularization
© Deployment

» Execution: Observe X;, compute u; = m(o;)
» Forecast: Optionally predict X;,; for monitoring
» Logging: Store transitions for periodic retraining
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MPC Initialization and Theoretical Foundations
MPC Initialization and MARL Fine-Tuning

@ Initialize MARL with model predictive control (MPC) using DCRNN as one-step model
@ Fine-tune agents with MARL to adapt to nonlinear effects

@ Combines model-based and model-free learning for robust control

Consistency of Diffusion Convolution

3 =—v Vo+ sV

@ Continuous transport:

o Discretized: ¢y1 =~ [(1 — &)l + aPr + BPpld:

@ DCRNN approximates polynomial functions of Pr, P,
Stability Under Model Error

@ Assume Lipschitz error: ||f(X,u) — f(X,u)|| <e

@ If policy satisfies: V/(f(X¢,ut)) — V(Xt) < —a||Xe||? + ce

@ Then system remains input-to-state stable for small €

Lee & Constantinides (HedgeSPA & Imperial College) Energy Modeling via MARL and DCRNN October 2025

17 / 28



Training Pipeline
Data Preprocessing
@ Normalize features per node using Z-score
@ Initialize A* with physical priors; allow small corrections AA

@ History window k € [20,100] for context vs. stability
Architecture Choices

@ Diffusion steps K = 2 or 3; hidden size: 64256
@ Control conditioning: concatenate U;, FiLM-style gating

Optimization Strategy

@ Forecasting: Adam optimizer, cosine decay, teacher forcing scheduled sampling

@ MARL: actor-critic, target networks, prioritized replay, entropy annealing

Regularization and Constraints
@ Spectral norm on diffusion kernels; graph sparsity penalties
@ Safety layers: project actions, enforce feasibility
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Evaluation Framework
Methodology
@ Datasets: synthetic PDE pipe simulations, historical SCADA/PI telemetry

@ Baselines: ARIMA, LSTM, TCN; GCN-GRU, Graph WaveNet, STGCN; PID/MPC, single-agent
RL

Metrics

@ Forecasting: MAE, MAPE, RMSE, calibration error

@ Control: cumulative reward, energy efficiency, constraint violations, settling time

@ Ablations: graph compression, diffusion steps K, control conditioning, DCRNN vs. GRU
Testbed Overview

@ Closed-loop hydrogen production simulation

@ Thermal, mass, electrical dynamics; realistic deployment validation
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System Design and Control

Graph Construction
@ Directed graph G = (V/, E): electrolyzers, compressors, heat exchangers, mirror arrays
@ Edges encode thermal, fluid, electrical flow
@ Feature vector xt(i) € RY: temp, pressure, voltage, flow, actuator

@ Global schema with semantic sparsity

Temporal Forecasting
@ PyTorch implementation; input: X;_sg.t, output: Xey1:143

@ Diffusion convolution + GRU for directional transport and temporal dependencies

Closed-Loop Control
© DCRNN predicts X;i1:643
@ AlController selects uy
© PlantSimulator computes X1
© Loop repeats for adaptive control
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Control Simulation Results (Starting Temp = 90°C, Target = 110°C)

Iteration

0
10
20
30
40
50
60
70
80
90

Comp. Time (sec)

Lee & Constantinides (HedgeSPA & Imperial College)

11x11 Adjacency Matrix
Tank Temp (°C) Mirror Action

89.71 On
87.15 On
84.98 On
85.80 On
90.55 On
98.32 On
105.31 On
109.45 On
109.21 On
107.68 On
4.832946

17x17 Adjacency Matrix
Tank Temp (°C) Mirror Action

89.80 On
88.20 On
86.16 On
86.82 On
91.96 On
99.58 On
106.88 On
110.21 Off
109.18 On
106.88 On
4.684803

Energy Modeling via MARL and DCRNN

22x22 Adjacency Matrix
Tank Temp (°C) Mirror Action

89.69
88.09
86.05
86.14
90.93
98.61
105.05
109.68
108.62
106.82

4.706305

On
On
On
On
On
On
On
On
On
On
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Control Simulation Results (Target = 110°C, Various Starting
Temperatures)

Iteration

0
10
20
30
40
50
60
70
80
90

>mp. Time (sec)
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Start at 90°C

Tank Temp (°C)

Mirror Action

89.71 On
87.15 On
84.98 On
85.80 On
90.55 On
98.32 On
105.31 On
109.45 On
109.21 On
107.68 On
4.832946

Start at 100°C Start at 108°C
Tank Temp (°C) Mirror Action | Tank Temp (°C)
99.76 On 107.67
98.05 On 105.88
95.84 On 103.86
95.83 On 103.93
101.15 On 108.95
108.87 On 115.29
109.88 Off 114.01
109.65 Off 112.71
108.55 On 110.61
106.48 On 109.14
4.802022 4.779279

Energy Modeling via MARL and DCRNN

Mirror Action

On
On
On
On
On
Off
Off
Off
Off
On

Start at 115°C

Tank Temp (°C)  Mirror A
114.98 On
113.38 On
111.02 On
110.94 On
115.70 On
120.89 Off
120.18 Off
119.11 Off
117.55 Off
115.82 Off

4.807150
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Simulation Insights
Adjacency Matrix Augmentation
@ Duplicate sensor nodes for intake-output dynamics

@ 17x17 and 22x22 matrices preserve topology
Results: Matrix Size

@ Predictive accuracy stable; runtime: 11x11 — 4.83s, 17x17 — 4.68s, 22x22 — 4.71s

Real-Time Deployment
@ 100 slices/day — 14 m24s/slice; history: 50 slices; horizon: 3 slices

@ Inference: <5s on 2-core Xeon

Results: Start Temperatures

@ Policy delays mirror deactivation in cold conditions; safety overrides learned behavior

@ Runtime: 90°C — 4.83s, 100°C — 4.80s, 108°C — 4.78s, 115°C — 4.81s
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Summary and Future Work

Section Summary
@ DCRNN: accurate short-horizon forecasts
@ MARL: stable, constraint-respecting policies
@ Fast inference on standard hardware

@ CFD too slow for short-horizon control

Deployment Limitations
o Fixed A* may miss regime shifts — learn A*(X;) via attention
@ Sensor noise — Kalman/Neural-Kalman filters
@ Partial observability — Dec-POMDPs, shared critics

@ Safety certification — control barrier functions, reachability analysis
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Toward Physics-Informed Optimization

Physics-informed loss:

m(¢ i i j—i i i i i G
Lows = D || 752 (T = T = 320l e (T9 = TO) 4 BT = o) = 70!
i J

1

Differentiable MPC head: Solve constrained quadratic subproblem with backprop

Multi-horizon rollout: Validate closed-loop behavior to detect drift or compounding error
Next step: Set up R&D Center at Bayes Centre, University of Edinburgh
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Conclusions

Unified framework for forecasting and control in energy systems
Combines graph compression, DCRNN prediction, and MARL control
Diffusion convolution captures directed energy transport

One-step forecasting reduces complexity and supports real-time optimization

CTDE-style MARL integrates naturally with physical constraints
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Real-Time Viability and Simulation Integration

Real-Time Viability
@ All test computations complete in < 5 seconds on standard desktop hardware
@ Enables decisions within narrow temporal windows
@ CFD models are too slow for short-horizon control

@ Runtime and accuracy confirm commercial viability

Bridging Simulation and Control
@ Future work: Evaluate with CFD simulations and real-world hardware
@ Physics-informed regularization strengthens reliability
@ Goal: Bridge gap between high-fidelity simulation and sensor-driven control

@ Supports next-generation energy infrastructure
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