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Goal: Use AI to automate 2∼3X more-efficient solar-thermal technologies

(a) Desert deployment does not need to pay for
advanced, high-efficiency technology.

(b) High-efficiency tech works to maximize
energy from limited space (e.g. rooftops).

Figure: AI enables optimal placement of advanced tech by overcoming traditional control barriers.
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Abstract

Modern energy infrastructures exhibit complex spatiotemporal dynamics across thermal, mass, and
electrical domains. We propose a unified framework that:

Compresses multi-layer graphs into a single effective flow network

Applies DCRNN for one-step-ahead node state prediction

Integrates MARL for actuator control optimization

This approach balances physical fidelity with computational tractability and supports real-time
regulation in operational energy systems.
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Preprint
Being processed by MDPI Information (IF 2.4, CiteScore 6.9) for its forthcoming Special Issue:
“Applications of Information Extraction, Knowledge Graphs, and Large Language Models”
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Motivation

Traditional PDE-based models are accurate but hard to scale

Energy systems are heterogeneous and topology evolves frequently

Data-driven graph models offer flexibility but face:
1 Multi-layer graph complexity
2 Long-range temporal dependencies
3 Non-stationary operating regimes

Practically, this represents a significant and ambitious undertaking:
1 Several governments have expressed formal interest in deployment
2 UK has committed to providing access to a designated test site at a symbolic rental rate,

alongside support for establishing an R&D center at Bayes Centre, Univ of Edinburgh
3 A Special Purpose Vehicle (SPV) is being structured to consolidate assets and enable

scalable investment
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Design Principles

1 This is based on layered graphs (e.g. thermal, mass, electrical, etc.); compressed into a
single directed graph based on energy flow

2 Use DCRNN (initially developed at Caltech for controlling traffic flows in LA) to forecast
next-step node states

3 Close the loop with MARL agents (used in manufacturing to control overflows) using
learned forecasts

This preserves locality, reduces memory, and enables fast policy improvement.
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Background Research

1 Multi-Agent Reinforcement Learning (MARL)
▶ Agents interact with environment to maximize expected return
▶ MARL settings: Dec-POMDPs, CTDE
▶ Coordination via mixing networks, shared critics, communication
▶ Applied to edge computing and industrial control, so it is a natural fit with energy systems
▶ Rewards reflect efficiency, stability, and safety

2 Diffusion Convolutional RNN (DCRNN)
▶ Combines graph diffusion with GRUs
▶ Models directional transport via biased random walks
▶ Learns spatiotemporal signal propagation
▶ Proven effective in traffic and recommendation systems
▶ Physically consistent for heat and mass flow modeling
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Problem Formulation

Graph: G = (V ,E ,A), with compressed adjacency A

Node state: x
(i)
t = [T

(i)
t , q

(i)
t , p

(i)
t , . . . ]

System dynamics: Xt+1 = f (Xt , ut ;G ) + εt
Objectives:

▶ Forecast Xt+1 from history
▶ Compute control ut minimizing stage cost or maximum total output objective

Energy Transfer Approximation: Local energy balance given by:

E
(i)
t = m(i)cpT

(i)
t , Ė

(i)
t ≈

∑
j

αjiq
(j→i)
t cp(T

(j)
t − T

(i)
t )− β(i)(T

(i)
t − Tamb) + γ(i)u

(i)
t

▶ αji : directional coupling
▶ β(i): energy loss coefficient
▶ γ(i)u

(i)
t : actuation input
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Graph Compression Strategy

Aggregate multi-layer graphs into one:

Aij =
∑

ℓ∈{thermal, mass, electrical}

wℓ · ϕℓ(A
(ℓ)
ij )

Optional learned correction:

A⋆ = A+∆A, ∥∆A∥1 ≤ λ

Preserves topology and directionality
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DCRNN for One-Step Forecasting

Combines diffusion convolution with GRU architecture

Predicts next-step node states Xt+1 from current state and control

Enables conditional forecasting with control-aware dynamics

Diffusion Convolution:
Given row-normalized transition matrices
D−1A and D̃−1AT , the K-step bidirectional
diffusion convolution is:

DiffConv(X ) =
K∑

k=0

D−1AkXΘ
(f )
k +

D̃−1(AT )kXΘ
(b)
k

Captures anisotropic transport aligned with
physical flow and supports directional
modeling in energy networks

GRU Integration:
Embed diffusion convolution in GRU:

Zt = σ(DiffConv([Xt ,Ut ])Wz + Ht−1Rz + bz)

Rt = σ(DiffConv([Xt ,Ut ])Wr + Ht−1Rr + br )

H̃t = tanh(DiffConv([Xt ,Ut ])Wh + (Rt ⊙ Ht−1)Rh + bh)

Ht = (1− Zt)⊙ Ht−1 + Zt ⊙ H̃t

Final prediction: Xt+1 = HtWo + bo
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Forecasting Objective and MARL Control

Loss and Training Objective

Lforecast =
∑
t

∥X true
t+1 − X pred

t+1 ∥1 + η∥∆A∥1

+ ρ
∑

i max(0,−A⋆
ii )

L1 loss for robustness to outliers

Penalizes self-loops and encourages sparsity

MARL Control with One-Step Horizon

Each actuator node i ∈ U is assigned an
agent

Observes local and neighborhood states:

o
(i)
t = ψ(Xt ,N(i ;G ))

Uses DCRNN as learned transition model for
planning
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Reward Shaping and Bellman Update

Reward Shaping

Actuation cost: −λu∥ut∥22
Smoothness: −λ∆∥ut − ut−1∥22
Tracking:

rt = −
∑
i

w
(i)
T (T

(i)
t+1 − T

(i)
ref )

2

-
∑

(i,j)∈C w
(i,j)
q (q

(i→j)
t+1 − q

(i→j)
ref )2

Bellman Equation with DCRNN

Q(st , ut) = rt + γEst+1 [V (st+1)],

st+1 = Enc(Xt+1) = Enc(DCRNN(Xt , ut))

Reduces compounding model error

Stabilizes training with one-step lookahead

Lee & Constantinides (HedgeSPA & Imperial College) Energy Modeling via MARL and DCRNN October 2025 13 / 28



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CTDE and One-Step Forecasting Power

Centralized Training, Decentralized
Execution (CTDE)

Centralized critic Q(s, u) trained with joint
rollouts

Each agent executes local policy π(i)(a|o(i))

Optional parameter sharing and neighbor
communication

One-Step Forecasting Power

Xt+1 = AxXt + Buut + εt , ρ(Ax) < 1

DCRNN learns local Jacobians via diffusion
kernels

Bellman backups over one step sufficient for
greedy policy improvement

Prevents error accumulation over long
rollouts
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Valve Dynamics and Safety Constraints

Valve Control and Energy Flow

Mass flow: q
(i→j)
t+1 = g(u

(i→j)
t )

Pressure drop: ∆p
(i,j)
t ≈ k

(i→j)
v u

(i→j)
t ∆p

(i,j)
t

Heat transfer:

Q̇
(i→j)
t+1 = q

(i→j)
t+1 cp(T

(i)
t − T

(j)
t )

Temperature update:

T
(j)
t+1 = T

(j)
t +

∆t

m(j)cp

(∑
i

Q̇
(i→j)
t+1 −

∑
k

Q̇
(j→k)
t+1 − h(j)A(j)(T

(j)
t − Tamb)

)

Safety and Constraints

Temperature bounds: T
(i)
min ≤ T

(i)
t ≤ T

(i)
max

Control bounds: 0 ≤ u
(i)
t ≤ 1

Flow limits:
∑

j q
(i→j)
t ≤ q

(i)
max

Smoothness: |∆u
(i)
t | ≤ δu

Training: penalize violations with barrier
terms

Execution: project actions onto feasible set
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Integrated Algorithm Overview

1 Graph Compression
▶ Input: Layered adjacencies A(ℓ), physical metadata
▶ Output: Effective directed adjacency A⋆

2 DCRNN Training
▶ Data: Sequences (Xt−k+1:t , ut−k+1:t) → Xt+1

▶ Objective: Minimize Lforecast; early stopping on validation

3 Critic and Policy Training (CTDE)
▶ Target: yt = r(st , ut , st+1) + γVθ(st+1)
▶ Critic: Minimize (Qθ(st , ut)− yt)

2

▶ Policy: Maximize Qθ(st , πϕ(ot)) with entropy regularization

4 Deployment
▶ Execution: Observe Xt , compute ut = π(ot)
▶ Forecast: Optionally predict Xt+1 for monitoring
▶ Logging: Store transitions for periodic retraining
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MPC Initialization and Theoretical Foundations
MPC Initialization and MARL Fine-Tuning

Initialize MARL with model predictive control (MPC) using DCRNN as one-step model

Fine-tune agents with MARL to adapt to nonlinear effects

Combines model-based and model-free learning for robust control

Consistency of Diffusion Convolution

Continuous transport: ∂ϕ
∂t = −v · ∇ϕ+ κ∇2ϕ

Discretized: ϕt+1 ≈ [(1− α)I + αPf + βPb]ϕt

DCRNN approximates polynomial functions of Pf , Pb

Stability Under Model Error

Assume Lipschitz error: ∥f (X , u)− f (X , u)∥ ≤ ε

If policy satisfies: V (f (Xt , ut))− V (Xt) ≤ −α∥Xt∥2 + cε

Then system remains input-to-state stable for small ε
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Training Pipeline
Data Preprocessing

Normalize features per node using Z-score

Initialize A⋆ with physical priors; allow small corrections ∆A

History window k ∈ [20, 100] for context vs. stability

Architecture Choices

Diffusion steps K = 2 or 3; hidden size: 64256

Control conditioning: concatenate Ut , FiLM-style gating

Optimization Strategy

Forecasting: Adam optimizer, cosine decay, teacher forcing scheduled sampling

MARL: actor-critic, target networks, prioritized replay, entropy annealing

Regularization and Constraints

Spectral norm on diffusion kernels; graph sparsity penalties

Safety layers: project actions, enforce feasibility
Lee & Constantinides (HedgeSPA & Imperial College) Energy Modeling via MARL and DCRNN October 2025 18 / 28
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Evaluation Framework

Methodology

Datasets: synthetic PDE pipe simulations, historical SCADA/PI telemetry

Baselines: ARIMA, LSTM, TCN; GCN-GRU, Graph WaveNet, STGCN; PID/MPC, single-agent
RL

Metrics

Forecasting: MAE, MAPE, RMSE, calibration error

Control: cumulative reward, energy efficiency, constraint violations, settling time

Ablations: graph compression, diffusion steps K , control conditioning, DCRNN vs. GRU

Testbed Overview

Closed-loop hydrogen production simulation

Thermal, mass, electrical dynamics; realistic deployment validation
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System Design and Control
Graph Construction

Directed graph G = (V ,E ): electrolyzers, compressors, heat exchangers, mirror arrays

Edges encode thermal, fluid, electrical flow

Feature vector x
(i)
t ∈ Rd : temp, pressure, voltage, flow, actuator

Global schema with semantic sparsity

Temporal Forecasting

PyTorch implementation; input: Xt−50:t , output: Xt+1:t+3

Diffusion convolution + GRU for directional transport and temporal dependencies

Closed-Loop Control

1 DCRNN predicts Xt+1:t+3

2 AIController selects ut

3 PlantSimulator computes Xt+1

4 Loop repeats for adaptive control
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Control Simulation Results (Starting Temp = 90◦C, Target = 110◦C)

Iteration
11x11 Adjacency Matrix 17x17 Adjacency Matrix 22x22 Adjacency Matrix

Tank Temp (◦C) Mirror Action Tank Temp (◦C) Mirror Action Tank Temp (◦C) Mirror Action
0 89.71 On 89.80 On 89.69 On
10 87.15 On 88.20 On 88.09 On
20 84.98 On 86.16 On 86.05 On
30 85.80 On 86.82 On 86.14 On
40 90.55 On 91.96 On 90.93 On
50 98.32 On 99.58 On 98.61 On
60 105.31 On 106.88 On 105.05 On
70 109.45 On 110.21 Off 109.68 On
80 109.21 On 109.18 On 108.62 On
90 107.68 On 106.88 On 106.82 On

Comp. Time (sec) 4.832946 4.684803 4.706305
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Control Simulation Results (Target = 110◦C, Various Starting
Temperatures)

Iteration
Start at 90◦C Start at 100◦C Start at 108◦C Start at 115◦C

Tank Temp (◦C) Mirror Action Tank Temp (◦C) Mirror Action Tank Temp (◦C) Mirror Action Tank Temp (◦C) Mirror Action
0 89.71 On 99.76 On 107.67 On 114.98 On
10 87.15 On 98.05 On 105.88 On 113.38 On
20 84.98 On 95.84 On 103.86 On 111.02 On
30 85.80 On 95.83 On 103.93 On 110.94 On
40 90.55 On 101.15 On 108.95 On 115.70 On
50 98.32 On 108.87 On 115.29 Off 120.89 Off
60 105.31 On 109.88 Off 114.01 Off 120.18 Off
70 109.45 On 109.65 Off 112.71 Off 119.11 Off
80 109.21 On 108.55 On 110.61 Off 117.55 Off
90 107.68 On 106.48 On 109.14 On 115.82 Off

Comp. Time (sec) 4.832946 4.802022 4.779279 4.807150
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Simulation Insights
Adjacency Matrix Augmentation

Duplicate sensor nodes for intake-output dynamics

17×17 and 22×22 matrices preserve topology

Results: Matrix Size

Predictive accuracy stable; runtime: 11×11 → 4.83 s, 17×17 → 4.68 s, 22×22 → 4.71 s

Real-Time Deployment

100 slices/day → 14m24 s/slice; history: 50 slices; horizon: 3 slices

Inference: <5s on 2-core Xeon

Results: Start Temperatures

Policy delays mirror deactivation in cold conditions; safety overrides learned behavior

Runtime: 90◦C → 4.83 s, 100◦C → 4.80 s, 108◦C → 4.78 s, 115◦C → 4.81 s
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Summary and Future Work

Section Summary

DCRNN: accurate short-horizon forecasts

MARL: stable, constraint-respecting policies

Fast inference on standard hardware

CFD too slow for short-horizon control

Deployment Limitations

Fixed A⋆ may miss regime shifts → learn A⋆(Xt) via attention

Sensor noise → Kalman/Neural-Kalman filters

Partial observability → Dec-POMDPs, shared critics

Safety certification → control barrier functions, reachability analysis
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Toward Physics-Informed Optimization

Physics-informed loss:

Lphys =
∑
i

∥∥∥∥∥∥m
(i)cp
∆t

(T
(i)
t+1 − T

(i)
t )−

∑
j

q
(j→i)
t cp(T

(j)
t − T

(i)
t ) + β(i)(T

(i)
t − Tamb)− γ(i)u

(i)
t

∥∥∥∥∥∥
Differentiable MPC head: Solve constrained quadratic subproblem with backprop

Multi-horizon rollout: Validate closed-loop behavior to detect drift or compounding error

Next step: Set up R&D Center at Bayes Centre, University of Edinburgh
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Conclusions

Unified framework for forecasting and control in energy systems

Combines graph compression, DCRNN prediction, and MARL control

Diffusion convolution captures directed energy transport

One-step forecasting reduces complexity and supports real-time optimization

CTDE-style MARL integrates naturally with physical constraints
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Real-Time Viability and Simulation Integration

Real-Time Viability

All test computations complete in < 5 seconds on standard desktop hardware

Enables decisions within narrow temporal windows

CFD models are too slow for short-horizon control

Runtime and accuracy confirm commercial viability

Bridging Simulation and Control

Future work: Evaluate with CFD simulations and real-world hardware

Physics-informed regularization strengthens reliability

Goal: Bridge gap between high-fidelity simulation and sensor-driven control

Supports next-generation energy infrastructure
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