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IARIA Path Planning Advances in Multi-UAV Networks
L,

* Motivation of this talk
« UAV(drones) - popular for many applications and services (civilian, military)
« Multiple UAVs are wirelessly interconnected in ad hoc manner, UAV networks (UAVNET)

 FANET acronym is also used for Flying Ad hoc Networks - able to forward packets, gather,
and share information

« UAVNETSs - different characteristics and requirements different from traditional mobile ad
hoc networks (MANET) and vehicular ad hoc networks (VANET)

 large variety of operational contexts
« dynamic behavior, rapid mobility and topology changes (physical and logical)
» cooperation needed: UAV-ground stations (GS), UAV-UAV, UAV- satellites, UAV swarms
« 3D Work-space/ environment (including space communications)
» Obstacle-avoiding paths
» Real-time problems during flight

» Multi-UAV (e.g. swarms)- specific problems (group formation, path planning, task
assignment)

 Energy consumption issues, ....

» specific methods and technologies for Data Plane and Management & Control Planes
(M&C) at different architectural layers

» Physical layer, MAC layer, routing, path planning, UAV tracking, traffic engineering,
cooperation, security, etc.

* Multi-UAV Path Planning—important topics in UAV area
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1.1 Unmanned Aerial Vehicles (UAV) (drones)

UAVs- popular solutions for many applications (civilian domains, military domains)
* Missions

* surveillance, delivery, searching, transportation, agriculture, forestry,
environmental protection

» mission critical operations - rescue/emergency, military actions, security

UAVs are wirelessly interconnected in ad hoc manner > UAVNET
UAV Communication in multi-layered networks — complex process

Communication technologies used in UAVNETs depend on applications
 Examples:
* Outdoor - a simple line of sight 1-to-1 link with continuous signal transmission
E.g.: surveillance-UAVs
« Satellite communication - preferable solution - for security, defense, or more
extensive outreach operations
« Civil and personal applications - cellular communication technologies are
preferred
« UAV swarms- utilize mixed communication technologies

» Limitations and challenges in UAV technology: battery capacity, limited flight
autonomy, manufacturing costs, environment issues, security concerns and others
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1.2 Unmanned Aerial Vehicles (UAV) - classification
 Different criteria depending on UAV missions and specific parameters

 Missions and applications - civili and commercial UAVs: agriculture, aerial
photography, logistics, data collection; mission critical, special domain - military
missions

» Performance-related characteristics: range, maximum altitude, aircraft weight,
wingspan, payloads, speed, endurance, cost design and size

. Engine type: fuel engines or electric motors
. Mechanical/physical characteristics:
. weight - Micro, Light, Medium, Heavy, and Super Heavy classes
* range: ~5 kilograms to over 2 metric tons
. landing and takeoff capabilities

« VTOL (Vertical Takeoff and Landing) — no external support to takeoff and
landing

 HTOL (Horizontal Takeoff and Landing)- need external support
* longer flight ranges, can carry larger payloads,
* Hybrid- combines the capability of both VTOL and HTOL types

. flight range: close, short, medium, and large endurance categories, spanning
distances from under 10 to 1500 kms
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1. Introduction

1.3 UAV Networks

Single UAVs systems- have been utilized for quite a long time in many apps.
« UAVs wireless connections: to ground base station (GS) or to a satellite station
- star topology
Multi UAVs systems i.e., UAV networks including swarms of UAVs; no need to
connect every UAV to GS
Other terminologies
 UAV communication networks (UAVCN) , a.k.a. flying ad hoc network (FANET)

Relationships with MANET (Mobile Ad hoc Network) and VANET (Vehicular Ad hoc
Network): FANET € VANET € MANET

UAV networks — characteristics different w.r.t. MANETs and VANETs
« dynamic behavior - rapid mobility and dynamic topology (physical, logical)
 new challenges for communication at: PHY layer, MAC layer, management and
control, routing and path planning, traffic management, cooperation, security

Different topics on Multi-UAV networks: Cooperative/swarm Multi-UAVs; Opportunistic
relaying networks; Delay-tolerant UAVs networks; Energy issues; Ground WSN; Internet
of Things (loT); Cooperation with Cloud Computing; Heterogeneity; Self-organization;
Security; Al applied in UAV

Source: A.l.Hentati, L.C. Fourati, Comprehensive survey of UAVs communication networks, Computer Standards &
Interfaces 72 (2020) 103451, www.elsevier.com/locate/csi
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A 1. Introduction

1.3 UAV Networks
* Overview of a multi-UAV ecosystem
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Source: W.Y.H. Adoni, S.Lorenz, J.S.Fareedh, R.Gloaguen and M.Bussmann, Investigation of Autonomous Multi-UAV
Systems for Target Detection in Distributed Environment: Current Developments and Open Challenges, 2023,

https://doi.org/10.3390/drones7040263
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1.3 UAV Networks
- Basic Multi-UAV topologies- examples
 (a) Star topology: each UAV (node) is directly connected with GS node
* (b) Mesh topology: a.k.a. Single-Group Swarm Ad hoc Network
« The GS is only connected to a single node (this is the cluster head of the UAV
group- playing a role of Gateway)
* The cluster head passes the data packets from the GS to the member nodes
and vice-versa
 Intra-group communication topologies: star, ring, mesh

* (c) Cluster-based network topology; a.k.a. Multi-group Swarm Ad hoc Network
« The UAVs are grouped in several groups/clusters; each cluster has a head
« The GS is connected to the head UAVs of clusters
* The heads collect data packets from the member UAVs and forward them to the
GS and vice versa

* (d) Hybrid mesh network- a.k.a Multi-layer Swarm Ad hoc Network
* One cluster head UAV is connected to the GS
» The cluster head can pass the information
» from the GS and vice-versa
* to the UAVs of its group
 to other nearby cluster heads
» The GS can be connected also to some single UAVs or group cluster heads
 Inter-UAV communication topology types: star, ring, mesh
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1.3 UAV Networks

* Multi-UAV topologies: (a) Star b) Mesh (c) Cluster-based (d) Hybrid mesh
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Source: N. MANSOOR et al., A Fresh Look at Routing Protocols in Unmanned Aerial Vehicular

Networks: A Survey, IEEE Access June 2023
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2. Multi-UAV and Swarms

2.1 Multi-UAV systems
* Multi-UAV systems advantages vs. single UAV

Time efficiency. The missions operational times can be significantly reduced
 (e.g., target search, exploration, etc.)
Cost: it could be cheaper (e.g., concerning power consumption)

Simultaneous-synchronized actions: a team of UAVs can accomplish tasks in
different geo-locations at the same time (e.g., to collect information from the points
that cannot be reached by a single UAV)

Complementarity: each team member can have a specific set of sensors
 All the sets would be complementary to each other
» Applicable when all the payload could not be physically located on a single UAV

Fault tolerance: the loss of a UAV unit could be mitigated by the algorithm managing
the flight by assigning additional tasks to other UAVs

Flexibility: a group of UAVs could be dynamically allocated to different tasks at the
same time and rearranged if necessary.

* Multi-UAV system issues

Group piloting problems

* Regulatory restrictions
» Safety issues (e.g., collision avoidance)

Source: Skorobogatov, C. Barrado, E. Salami, Multiple UAV Systems: A Survey, Unmanned
Systems, Vol. 8, No. 2 (2020) 149—-169, DOI: 10.1142/S2301385020500090
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2. Multi-UAV and Swarms

2.1 Multi-UAV systems

* Multi-UAV systems taxonomy — multi-criteria - examples

Collective organization: team (e.g. <10), squadron (21 teams), group (= 1 squadrons)
System autonomy: low/medium/high level
Spatial UAV relations: Physical (links)/virtual/no coupling

Temporal UAV relations:
» simultaneous (all UAVs execute the same task simultaneously)
« asynchronous:
« sequential (= 1 in the air)
« stand in (1 in the air + one back-up)
« call-in (=1 in the air + they can call help from others)

UAV similarity: identical, similar, heterogeneous

Task separation: functional, cross-functional

Mission Control: centralized, decentralized, mixed
User interaction: real-time, pre-planning, no interaction
Automatic plan: full, fixed, none

Source: Skorobogatov, C. Barrado, E. Salami, Multiple UAV Systems: A Survey, Unmanned
Systems, Vol. 8, No. 2 (2020) 149—-169, DOI: 10.1142/S2301385020500090
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2.1 Multi-UAV systems

» Typical applications based on of multi-UAV collaboration- examples
» Disaster rescue - UAVs collaborate (search, delivery, positioning
« algorithms - adaptive GA and PSO for task assignment and PP

« Area coverage -dynamically adjusting paths and optimizing mission execution,
addressing battery shortages and reducing working time

* Monitoring patrols- enable r.t. surveillance over large areas, employing algorithms
for obstacle avoidance and maintaining safe paths

2.2 Special case: UAV swarms

UAV swarm : a set of aerial UAV/robots working together for a specific goal

« UAV swarm domain belongs to aerial robotics area, leveraging collaborative autonomy
between them to enhance operational capabilities
« Applications
 Civilian sectors (entertainment, infrastructure inspection, and delivery services etc.)
* Military domain: surveillance, combat support/actions and logistics
» Topics of interest (research and implementation): applications, routing, coordinated

PP, task assignment, formation control, communication, scalability, energy, resource
limitations and allocation, security and privacy, Al/ML in UAV swarms

IARIA NetWare 2025 — October 26-30, 2025 Barcelona, Spain Slide 15



IARIA 2. Multi-UAV and Swarms

2.2 UAV swarms

General Swarm Robotics (SR) — includes (UAV) swarms
« SR: groups of robots- they collaborate with each other and with their environment to
execute complex tasks efficiently
Multi-Robot Systems (MRS)
« group of autonomous and relatively simple robots with similar capabilities

» equipped with local sensing and communication abilities, interacting locally with each
other and with environment

» autonomous aerial agents cooperate for PP, task allocation, and formation control

» decentralized and self-organized behavior enhance efficiency, reliability, and
adaptability

Swarm Intelligence (SI) algorithms

* inspired by natural behavior, they facilitate collaborative decision-making and
coordination in dynamic environments

UAV swarm infrastructure

« Each UAV is an individual unit within the swarm, equipped with sensors, processors,
and communication HW

» A control unit plays a central role in managing the swarm
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2. Multi-UAV and Swarms

2.2 UAV swarms

« Basic components of UAV swarms

Drones/Quadrotors -individual units with
sensors, processors and communication HW

Control Unit

« central entity for control, monitoring, and data
reception, (e.g., ground station (GS) or a cloud-
based system)

* it manages the swarm, ensuring operation within
desired parameters
Communication System - wireless network for
r.t. info exchange, (Wi-Fi, Bluetooth, Zigbee)

Integrated sensors (e.g., cameras, LiDAR,
"laser imaging, detection, and ranging”),
GPS, accelerometers, gyroscopes) for
environment data gathering and processing

SW Algorithms for: PP, collision avoidance,
formation control, and decision making

Power Source - batteries or tethered power
supplies critical for flight time and performance

Navigation System: GPS, inertial navigation,
visual odometry for autonomous navigation and
collision avoidance.

IARIA NetWare 2025 — October 26-30, 2025 Barcelona, Spain
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2.2 UAV swarms

* Features and characteristics of UAV swarms

» Cost-effectiveness, Scalability, Robustness, Survivability, Redundancy and Fault-
tolerance, Adaptability & Flexibility Autonomy, Parallelism, Multi-tasking capability,
Distributed coordination and tasks, High speed of mission, Radar cross-section

« Key topics in UAV swarms

 Task Allocation, Path Planning, Resource Allocation, Formation Control, Sensor
Placement, Network Optimization — are necessary for communication and data
exchange between multiple UAVs, to minimize latency and maximize efficiency,

2.3 UAV swarm communication architectures and topologies (see also Section 1.3)

« UAV-UAYV or UAVs - Control center

« U-U: direct link or multi-hop communication between UAVs, to exchange info from
sensors or radar

* U-l (Infrastructure): UAVs direct communication with the fixed central control center
(e.g.,GS), to get r.t. mission or control information and return collected data
« Approaches: centralized and decentralized architectures

» Centralized architecture
» 1-to-1 direct comm.: UAV - controller (e.g. GS); star topology (case a.— slide 11)
 (+) simple routing, useful for small systems
* (-) long delays might appear, (-) GS — single point of failure.
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2. Multi-UAV and Swarms

2.3 UAV swarm communication architectures and topologies
Decentralized architectures
Single-Group Swarm Ad hoc Network (see case b.— slide 11)

A single point - gateway UAV (GW-UAV) communicates to infrastructure; upload
and download of swarm information

U-U communications are also active between the swarm members
GW-UAV has two transceivers: for GW-U and for GW-l communication
(+) non-GW UAVs only need to carry low-cost/ lightweight short-reach transceivers

Example application: UAV cloudlet layer in Disaster Resilient three-layered
architecture for Public Safety Long-Term Evolution

Intra-swarm communication possible topologies:
* Ring- bidirectional loop

* (+) any UAV could play the GW role; redundancy (two paths between two
UAVSs); (-) low scalability

« Star (the GW is placed in the swarm middle)
* (+) good r.t. response (low delay); (-) GW- single point of failure
* Mesh (combination star + ring); frequently used topology
« all UAV nodes the same capabilities; (+) any UAV node can be a GW
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2.3 UAV swarm communication architectures and topologies

* Multi-Group Swarm Ad hoc Network
* (see case c) in Introduction — slide 11)
» This is a centralized architecture w.r.t. groups
* Inter-group i.e., Group-to-Group (G-G) communications — via the infrastructure
 GW-UAVs of each group is responsible for communicating with the infrastructure

 (+) different types of groups/clusters may perform different tasks for different
applications

* (-) G-G communication might expose high latencies (the path is G-I-G)
« Example app. Multi - theater joint operation (military domain)

* Multi-Layer Swarm Ad hoc Network
* (see case d) in Introduction — slide 11)
» First layer: a group of adjacent UAVs of the same type
* Intra-group communications: ring, star, mesh
« Communication between any two UAVs does not require infrastructure relay

» Second layer: different types of UAV groups; rely on GW-UAVs to perform G-G
communication

» Third layer: the closest GW-UAV communicates with the infrastructure
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2.3 UAV swarm communication architectures and topologies

Multi-Layer Swarm Ad hoc Network (cont'd)

» This architecture is appropriate for scenarios with complex missions
* high number of UAVs executing the mission is required

* network topology frequently changes, and communication between the UAV nodes is
frequent

= FT - =
= 2 ar
B == '
=

: U-1-U Communication

: G-T-G Communication

U-T-I Communication

Infrastructure

Source: X. Chen, J.Tang 7ahd S. Lao, 7Reviéwrof Unmanned Aérial Vehicle Swarm Communication
Architectures and Routing Protocols, Appl. Sci. 2020, 10, 3661; doi:10.3390/app10103661

IARIA NetWare 2025 — October 26-30, 2025 Barcelona, Spain Slide 21



IARIA [=
[ 2. Multi-UAV and Swarms
2.3 UAV swarm communication architectures and topologies

Conclusions on swarm communication architecture

Centralized architecture - suitable for UAV small swarms and simple tasks
Each individual UAV requires a long-range communication link U-I.

Decentralized architecture - communication coverage is through a multi-hop network
. The GW-UAV performs U-l communication
Single-group swarm Ad hoc network - appropriate for a swarm having the
same type UAVs
« Multi-group swarm Ad hoc network- accept different UAV types; however, G-
G communication can experience high delays
* Multi-layer swarm Ad hoc network - relatively reliable because it overcomes
Single Point of Failure (SPOF)
UAV swarms have requirements of high coverage and maintaining connectivity
* high coverage: to be able to gather intelligence and analyze situations
» connectivity — assures r.t. communication of the swarm
In unknown environments, threats /obstacles could appear randomly in time and space
UAV members should be able to withdraw or rejoin; the connectivity may have
disruptions
To achieve an uninterrupted connectivity the distance in the UAV swarm should not
exceed the sensitivity of the receiver

Source: X. Chen, J.Tang and S. Lao, Review of Unmanned Aerial Vehicle Swarm Communication
Architectures and Routing Protocols, Appl. Sci. 2020, 10, 3661; doi:10.3390/app10103661
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2.3 UAV swarm communication architectures and topologies

« Conclusions on swarm communication architecture (cont'd)

+ UAVs swarm should be able to react cognitively to changes of the environment to
« adapt their movement to positions with channel characteristics

Centralized Communication Decentralized Communication Architecture

Features .
Architecture Single-Group Multi-Group ~ Multi-Layer
Multi-hop Communication X V Y y
UAVs Relay Traffic X V y V
Different Types of UAVs X X v V
Self-configuration X vV X V
Limited Coverage Y V v X
Single Point of Failure v X V X
Robustness v X X V

Note: “4/” = supported, “X” = not supported.

Source: X. Chen, J.Tang and S. Lao, Review of Unmanned Aerial Vehicle Swarm Communication
Architectures and Routing Protocols, Appl. Sci. 2020, 10, 3661; doi:10.3390/app10103661
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2.4 Tasks assignment in UAV swarms

Multi-UAV task planning and coordination involves
« Tasks allocation among UAVs and synchronizing their actions
« Activities
« creating action sequences for each UAV, resource allocation
* mechanisms to prevent collisions
« resolve conflicts during task execution
« Algorithms proposed
« Combinatorial optimizations
* have as objective a function representing the system’s overarching goal
« applied in task allocation, scheduling, and vehicle routing
« it assigns usually 1-to-1 task vs. agent, while minimizing the total assignment cost
« the number of agents vs. tasks count: -equal (N = M - balanced; N<> M -
unbalanced allocation
» Auction-based: UAVs bid on tasks, based on their capabilities and associated costs
« Algorithm types: Market-based or swarm-based algorithms
» Linear Assignment Problem (LAP) - the total assignment cost equals the summation
of individual agent costs
» Task assignment and interchangeability focus on task allocation and adaptability
« Task interchangeability - allocate tasks based on individual UAV capabilities
« Application examples
« warehouse automation and search and rescue (SAR) missions
» precision farming, monitoring multiple rows of crops for health, soil condition, and
yield data
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2.5 Formation control in UAV swarms

Coordinating multiple UAVS to maintain specific formations
« common goal; cohesive motion and control of the team is necessary
Challenge: to coordinate large groups of relatively simple UAVs to perform complex tasks

Robust and scalable control algorithms are needed to handle real-world uncertainties
and disturbances and to manage communication among swarm UAVs
The formation control coordinates UAV swarms to meet specific state constraints

 the planning is collective not individual

» a prescribed formation is maintained

 a single action drives the entire formation (reducing computational complexity)

Formation control strategies
 Virtual-Structure-based - use a virtual structure to guide the formation of UAVs
« Effective for maintaining rigid formations in applications like surveillance and
mapping
» Leader-Follower-based - One or more UAVs act as leaders, and the rest follow
» Useful when specific paths need to be followed, such as SAR operations

» Behavior-based - Each UAV follows simple behavior rules that result in the desired
formation

* Applicable in dynamic environments and tasks like reconnaissance and data
gathering.
Source: Y.Alqudsi and M. Makaraci UAV swarms: research, challenges, and future directions
Journal of Engineering and Applied Science (2025) 72:12, https://doi.org/10.1186/s44147-025-00582-3
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2.5 Formation control in UAV swarms
« Example

L 17

Source: Y.Alqudsi and M. Makaraci UAV swarms: research, challenges, and future directions
Journal of Engineering and Applied Science (2025) 72:12, https.//doi.org/10.1186/s44147-025-00582-3
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2.6 UAV Swarm Intelligence (Sl)
« One can make decisions collectively and complete the mission using relatively
simple instructions (Al and edge computing can contribute)
« Applications: civilian, military purposes

« Swarm intelligence (Sl)

« Slis an evolving area of bio-inspired Al; deep interconnection of the real system
having feedback loops

» Sl - scheduling, clustering, optimizing, and routing a cluster of similar individuals
 |Individuals follow rules and interact with each-other and with the environment

« Sl basic principles:
* Proximity: the swarm individuals can respond to the environmental variance
Quality: a swarm can respond to quality factors like location safety only

Diverse response: enables to design of the distribution s.t. all the individuals are
protected from environmental fluctuations to a maximum level

Stability: swarm stable behavior w.r.t. changes in the environment

Adaptability: to environment changes

S| mechanisms should deal with: environment, interactions, and activities of the
individual UAVs

Source: M.M. Igbal, Z.Anwar Ali, R. Khan and M.Shafiq, Motion Planning of UAV Swarm: Recent Challenges and
Approaches, IntechOpe, 2022, DOI: http.//dx.doi.org/10.5772/intechopen. 106270
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2.6 UAV Swarm Intelligence

« Example of Sl architectural decomposition - five layers: decision making, path
planning, control, communication and application layer

Decision-Making Layer

Task Evaluation | Mission Planning | Task Assignment |

Decision
Data
Path Planning Layer

Subtask Subtask Path Subtask Path
| Management | Planning Generation |

Path
Information

Control Layer

Task ' Formation Autonomous
Coordination Control Obstacle Avoidance

Interactive
information

Communication Layer

Application scenario
environment information

Communication Information Information
Network | | Exchange Fusion

Task
execution

Application Layer

| Industry Agriculture | Military |Transporl:ation

Source: Y. Zhou, B. Rao, W. Wang, UAV Swarm Intelligence: Recent Advances and Future Trends, IEEE
Access, September 2020, DOI 10.1109/ACCESS.2020.3028865
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2.6 UAV Swarm Intelligence

Sl architectural decomposition — short description of layers
« Decision-Making Layer
» Responsible for mission planning; task assignment and evaluation in UAV clusters
» Key areas: swarm architecture, effectiveness assessment, scheduling and intelligent
decision-making; Several architectures proposed
» Effectiveness models utilize system dynamics to evaluate UAV performance based on
survival rates and mission completion
» Scheduling for complex task planning (e.g., using heuristic algorithms for efficient
resource allocation)

- Path Planning (PP) Layer
* |t transforms decision data into actionable flight paths for UAVs
» Determines feasible paths between start and endpoints (NP-hard problems!)

» Algorithms: classic (e.g., A*) and meta-heuristic (e.g., Particle Swarm
Optimization (PSO), Gray Wolf Optimization algorithm (GWO) )
» Important topics for PP: 3D-issues, dynamicity, optimality, area coverage PP
PP in 3D environment is complex
* methods like GWO and PRM are utilized for obstacle avoidance
« dynamic PP: real-time obstacle avoidance and sudden threats (techniques like
cubic spline and Kalman filters can be employed)
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2.6 UAV Swarm Intelligence

Sl architectural decomposition — short description of layers (cont’d)

« Control Layer
* |t coordinates tasks among UAVs based on path information and environmental data

« Manages: formation control, task coordination and automatic obstacle avoidance
Design: system control platforms, controller design, and collaborative search
technologies

« Enhance flight efficiency and ensures safety during operations
* Running protocols for maintaining group cohesion and flexibility in dynamic
environments
« Communication Layer (for UAV Coordination)
* |t supports information sharing UAV-UAV and UAVs - GS
» Related topics: architecture, net technologies and secure communication methods
* Aims to robust communication to support r.t. data sharing and coordination

« Applications of UAV Swarm Intelligence- examples

* Intelligent transportation, Environmental monitoring, Agriculture , Emergency
response, Military domain applications

Source: Y. Zhou, B. Rao, W.Wang, UAV Swarm Intelligence: Recent Advances and Future Trends, IEEE
Access, September 2020, DOI 10.1109/ACCESS.2020.3028865
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s 3. Path Planning in Multi-UAV Networks

3.1 Path planning (PP) problem

PP is related to the UAV routing and dependent on geographical/environment
information

« UAV PP (a.k.a. motion planning), is a branch of path-finding used in robotics
« UAV specific differences: 3D space, fixed-wing UAV (cannot hover), UAV swarms
« UAV PP main objectives

« Single PP: to find the best (i.e., optimum) collision-free path, start -> destination
Constraints: temporal, physical, and geometric

« Coverage PP (CPP) — UAV applications for specific region exploration

» PP Characteristics
» A path is represented as a continuous function with boundary conditions
A cost function includes path length, energy consumption, and collision risk
Key objectives: minimizing path length, energy consumption, collision-free navigation

Constraints arise from environment factors, physical limitations, task requirements,
and energy reservations

* PP problems of interest: environment modeling methods, path structures, optimality
and completeness criteria, path finding methods, UAV simulators

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.Idoumghar, UAV Path Planning Techniques: A Survey,
RAIRO-Oper. Res. 58 (2024) 2951-2989 RAIRO Op. Research, https://doi.org/10.1051/ro/2024073 www.rairo-ro.org

IARIA NetWare 2025 — October 26-30, 2025 Barcelona, Spain Slide 32



s 3. Path Planning in Multi-UAV Networks

3.1 Path planning (PP) problem
» Classes of UAV PP problems (from applications point of view)
 Informative PP (IPP). to maximize the amount and utility of data collection

» Coverage PP (CPP): to find a path that passes through all points of an area or
volume of interest, while avoiding obstacles
« CPP algorithms can be divided (according to the employed cellular environment
decomposition model), into main types: no decomposition, exact cellular
decomposition and approximate cellular decomposition
» Cooperative PP (specific to UAV swarms) to generate a coordinated mission through
utilization of PP algorithms

 Criteria to be considered when searching a path: minimum values for: path length,
flight time, fuel consumption, and danger exposure

* Depending whether the environment is known or not, PP algorithms can be:
« Offline PP
= Assumption: all environmental information is known in advance
= PP algorithms only depend on static environmental information
 Online PP
= The environment information is only partially known in advance
» paths must be adjusted in real-time, based on sensor information

= more complex problem

Source: Cabreira TM, Brisolara LB, Ferreira PR (2019) Survey on coverage path planning with unmanned aerial
vehicles. Drones 3(1):4. https:// doi. org/10. 3390/ drone s3010 004
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3.2 Path planning model

Consider a 3D workspace

Let it be w; it may have obstacles; let wo, be the i, obstacle

The free workspace (i.e., without obstacles) is the overall area represented by
* Wfree =w \UI Wo;

The initial point x ;,;; and the goal region x ,,,, are elements in w4,

The PP problem is defined by a triplet (X ¢, X goa1 s W free)

« Definition 1-PP: Given a function &:[0,T J-> R3 of bounded variation, where & (0)= x;,;
and 6 (T)= Xgoa,

« if there exists a process @ which can guarantee 6 (t) € w 4., for all te [0,T], then @
is called Path Planning

» Definition 2-Optimal PP
» Let 2 denote the set of all paths

» Given a PP problem ( -, -, -) and a cost function ¢ :X -> R 2 0, if a process fulfils the
Definition 1 and if exists a feasible path having the minimum of cost, then the
associated process @’ is named Optimal PP
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3.2 Path planning model

» Path Planning and Trajectory Planning: two distinct problems in robotics, but related

» Trajectory: a path is parameterized by time t
« Trajectory planning

« Usually, one considers the solution from a robot PP algorithm and determines how
to move along the path in wg,,

» the path is either a continuous curve or discrete line segments that connects the
start node x;,;;to the end node X,

* one needs to find smooth and continuous trajectory segments to move along the
path

« it can be described mathematically as a twice-differentiable polynomial

* i.e., the velocities and accelerations can be computed by taking the first and
second derivatives with respect to time

* The PP problem has a non-linear nature and frequently an exponential complexity

Source: Liang Yang, Juntong Qi Jizhong Xiao Xia Yong, A Literature Review of UAV 3D Path Planning, 2015,
https://www.researchgate.net/publication/282744674
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3.3 Environment Representation Problem (summary)

 Knowledge needed to a path planner

« about the environment and dynamics of the objects encountered in UAV operation
space

 Issues on 3D obstacles representation
» Obstacles: static or dynamic; any geometry: cubes, pyramids, floating balls, etc.
» The obstacles model will affect the path search algorithms

 The model should include the medium specifics (urban, rural, forests, special
zones, radar areas)

« Challenges: how to get enough accurate geometric coordinates of the obstacles

* The environment type (containing bridges, buildings (convex, and/or concave),
complex and cluttered spaces will determine the selection of representation
methods

* Environment complexity-related attributes
» Static-known (SK): All obstacles /objects are both static and known
« Dynamic-known (DK): Mobile obstacles /objects, their movement is known
» Static-unknown (SU): Static obstacles /objects; their relative positions are unknown
» Dynamic-unknown (DU): All obstacles /objects are both mobile and unknown
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3.3 Environment Representation Problem

3. Path Planning in Multi-UAV Networks

« 3D Environment representation- classes

Cell decomposition; Roadmap; Potential field

» Cellular decomposition (CD)
* Roadmap (RM): the problem space is a roadmap representation of the environment
» Potential field (PF): represents the problem space environment as a continuous APF

UAV Environment

Cell

Decomposition Roadmap Potential Field

Visibility [P dly-exploring Bl pyopabiictic Voronoi

Exact Approximate Adaptive e Ramll??gr Tree bty

Diagram
Source: M,R. Jones, S. Djhael, K. Welsh, Path-planning for Unmanned Aerial Vehicles with Environment

Complexity Considerations: A Survey, ACM Comput. Survey, Vol. 1, No. 1, November 2022.
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3.3 Environment Representation Problem

CLASSIFICATION
CHARACTERISTICS

ENVIRONMENT UAV-RELATED TIME
REPRESENTATION ATTRIBUTES CONSIDERATIONS

Figure Source: M,R. Jones, S. Djhael, K. Welsh, Path-planning for Unmanned Aerial Vehicles with
Environment Complexity Considerations: A Survey, ACM Comput. Survey, Vol. 1, No. 1, November 2022.
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3.3 Environment Representation Methods (See details in Backup slides)

« Cell decomposition

* The environment space is divided into a series of nonoverlapping cells
« Approximate Cell Decomposition

* It overlays a regular grid structure upon the environment space

« Decomposition into a set of structured cells
» Exact Cell Decomposition

* The space is divided into several non-overlapping polygon regions

« Trapezoidal: the space is split in distinct convex cell regions

» Boustrophedon: It minimizes the coverage path length in comparison to the
trapezoidal, through reducing the number of polygon cell regions created

» Adaptive Cell Decomposition (applicable to 2D and 3D space)
« |t deconstructs the environment only where an obstacle’s presence requires
* For a PP scenario an adaptive schema called (Quadtree) is constructed by

dividing the space into four equal sub-regions
« Roadmap Representation

« Connectivity graph - the nodes represent key free space locations
» The graph construction strategies can be different
* The edges weights are related to time or distance
 The graph is similar to that one in classical route planning
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3.3 Environment Representation Methods

 Roadmap Representation - examples(cont’'d)
* Visibility graphs (VG)
* Voronoi diagrams and path solutions
* Probabilistic Roadmap (PM)
* Rapidly-exploring Random Trees (RRTs)

- Artificial Potential Field (APF)
e The cell decomposition and roadmap approaches build an environment
representation from prior knowledge on environment
e (APF) computes in real-time a directional force to be applied to a UAV, based on
e the gravitational attractive forces applied by goal or target locations
e the cumulative repulsive forces applied by obstacles

Source: M. N.Bygi, 3D Visibility Graph, https://sharif.edu/~ghodsi/papers/mojtaba-nouri-csicc2007.pdf

Source: Tong, Wu Wen chao, H. Chang qiang, X. Yong bo, Path Planning of UAV Based on Voronoi Diagram
and DPSO H., Elsevier, Procedia Engineering 00 (2011) 000—000 4198 — 42031877-7058,
doi:10.1016/j.proeng.2012.01.643, www.Sciencedirect.com

Source: M. Farooq et al., Quadrotor UAVs flying formation reconfiguration with collision avoidance using
probabilistic roadmap algorithm. In 2017 Int’l Conf. (ICCSEC), pages 866-870. IEEE, 2017
Source: S.M. LaValle et al. Rapidly-exploring random trees: A new tool for path planning. 1998 Technical
Report (TR 98—11). Computer Science Department, lowa State University..
Source: N. He et al., Dynamic path planning of mobile robot based on artificial potential field, 2020 Int'l Conf. on
Intelligent Computing and Human-Computer Interaction (ICHCI), IEEE, 2020.
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3.4 Path Planning Methods

« Evaluation Metrics for PP Algorithms

« Path length measures the total distance traveled, influenced by obstacle distribution
and environmental complexity

 Computation time is critical for r.t. tasks

 Energy consumption relates to battery usage; important for long-duration missions

« Path safety assesses collision avoidance capabilities, while path smoothness
ensures efficient UAV motion

 Robustness evaluates adaptability to environmental changes and uncertainties

« Path Planning process actions (aiming to safe, efficient, and effective navigation)
* Note : some of these actions are executed in parallel

* 1. Environment Modeling: mapping physical features and identifying obstacles, using
imagery (e.g., from satellites) or real-time sensory data

« 2. Setting Objectives and Constraints: define objectives — e.g., minimizing travel
time or distance; identify constraints, e.g., maximum altitude and no-fly zones

» 3. Defining Start and End Points: - including any intermediate waypoints or targets

* 4. Path Generation: use algorithms - A*, Dijkstra, RRT, PSO, ACO, ML-based etc. , to
generate possible paths (based on objectives and constraints)
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

« Path Planning process actions (cont’'d)

5. Obstacle Detection and Avoidance: employ sensors for r.t. obstacle detection
and dynamically adjust the flight path to avoid obstacles

6. Path Optimization: Select the optimal path from generated options, balancing
factors like safety, efficiency, and compliance

7. Collision Risk Assessment. assess the path for potential collision risks (here,
communication with air traffic control could be needed)

8. Final Path Selection and Execution: select and execute the path, adjusting the
UAV's position, altitude, and speed as necessary

9. Monitoring and Re-planning: continuously monitor the path and re-plan if
unexpected changes occur in the environment or UAV performance

10. Arrival and Post-Flight Analysis: Upon arrival, complete the mission and
perform a post-flight analysis to assess and learn from the PP efficiency and any
deviations

Source: P.Kumar, K. Pal, M.Govi, Comprehensive Review of Path Planning Techniques for UAVs, ACM Computing
Surveys, ACM 0360-0300/2025/05-ART, http.://dx.doi.org/10.1145/3737280
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3.4 Path Planning Methods

 Classification of UAV PP methods

» Criteria: algorithmic principles, environmental conditions, task requirements
« Algorithmic principles: examples
 deterministic algorithms (e.g., Dijkstra, A*)
* random sampling algorithms (e.g., RRT, PRM)
« biologically inspired algorithms
* hybrid algorithms
* Environmental - related conditions
« static PP
* dynamic PP
» 3D path planning
» Task requirements
* single-UAV
» multi-UAV collaborative PP ( focus on coordination and task allocation)

Source: W. Meng, X.Zhang, L.Zhou, H. Guo and X.Hu , Advances in UAV Path Planning: A Comprehensive
Review of Methods, Challenges, and Future Directions, MDPI, 2025, https://doi.org/10.3390/drones9050376
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3.4 Path Planning Methods
« Classification of UAV PP methods- criteria: algorithms, environment, tasks

—_—

> Deterministic algorithm

> Random sampling algorithm

Algorithm-principle-
based classification

>» Biologically inspired algorithm

__ Single or
Multi-UAV

\ 4

Hybrid algorithm

Static environment path planning
algorithm

Y

UAYV Path planning Environment-based Dynamic environment path
Approaches classification planning algorithm

Y

3D environment path planning
algorithm

Y

Single UAV path planning
algorithm

h -
>

Task-based
classification

Y

planning algorithm

Multi-UAYV collaborative path ]

(>
|

W. Meng, X.Zhang, L.Zhou, H. Guo and X.Hu , Advances in UAV Path Planning: A Comprehensive
Review of Methods, Challenges, and Future Directions, MDPI, 2025, https.//doi.org/10.3390/drones9050376
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3. Path Planning in Multi-UAV Networks

Classification of UAV PP methods — criteria: algorithm types

1

sampling-based, heuristic, math models, bio-inspired, machine learning-based

Sampling Based
techniques

heuristic path

planning

Mathematical
Models

Linear
Programming

L APF — NLP

Note: This list is not exhaustive!
Other algorithms have also been
proposed.

Control Theory

.

Bézier curve
Curve
Dubin Trajector

vapunov Vecto
Field

Markov Model

Model
Predictive
Control

Intelligent Based

l

|

Bio-inspired

Techniques
1

Swarm

>

0

C

ABC

>

o)
g
o)

FA, SFLA,
GWO,BBO, IWP..

Evolutionary
Based
Differential =
Evaluation
i

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

mad Game Theory

Fuzzy Logic

ANN

Source: PKumar, K. Pal, M.Govi, Comprehensive Review of Path Planning Techniques for UAVs, ACM Computing

Surveys, ACM 0360-0300/2025/05-ART, http.//dx.doi.org/10.1145/3737280
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3.4 Swarm Path Planning Methods

Notations (partial list) The UAV swarm PP is a NP-hard problem
Categories: classic and meta-heuristic algorithms
Classic algorithms Classic algorithms require environmental information:
« RMA Road map algorithm e.g., A*, RMA, APF
« A" and APF Artificial Potential Field Meta-heuristic algorithms require information on the r.t.
Swarm intelligence (Sl)- based PP position and measured environmental elements: e.g.,
techniques- examples PSO, PIO, FOA, GWO

* In Sl systems, a group of UAVs interact with

each other and its environment to solve Other Sl-based algorithms

problems collectively or accomplish tasks «  FOA Firefly Algorithm
« ABC Artificial Bee Colony * TS Tabu Search
« ACO Ant Colony Optimization + EHO Elephant Herding Optimization
« BA Bat Algorithm * FPA Flower Pollination Algorithm
» CSA Cuckoo Search Algorithm * |PA Immune Plasma Algorithm
* FA Firefly Algorithm + GEO Golden Eagle Optimizer
« GWO Grey Wolf Optimization « AEO Artificial Ecosystem Optimizer
« PSA-ACO Parallel Self-Adaptive ACO * RLGWO Reinforcement learning based GWO
« PSO Particle Swarm Optimization «  AGWO Adaptive GWO algorithm

Source: M.M. Igbal, Z.Anwar Ali, R. Khan and M.Shafiq, Motion Planning of UAV Swarm: Recent Challenges and
Approaches, IntechOpe, 2022, DOI: http.//dx.doi.org/10.577 2/intechopen. 106270
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3.4 Path Planning Methods
Classification of UAV PP methods —criteria: algorithm types
. sampling-based, heuristic, math models, bio-inspired, machine learning-based
« Sampling-Based Techniques (SBTs)
« SBTs use random sampling to solve optimization problems or to estimate specific
quantities. They can search the best path in complex and dynamic environments
» Most Sampling techniques used inspection and 3D reconstruction applications

« Examples: Rapidly-exploring Random Trees (RRT), RRT*, Probabilistic Roadmap
(PRM), Voronoi Diagram(VD), Artificial Potential Field (APF)

» (+) SBTs PP is useful when it is difficult or impractical to use deterministic algorithms
+) RRT, PRM, VD, and PF are widely used; they excel in dynamic, uncertain envs.

-) less efficient and inaccurate than deterministic methods for specific problems

-) sensitive to initial conditions, risk local minima, and are resource-intensive

* Heuristic Path Planning

* They leverage heuristics to effectively guide searches through complex spaces
» Widely used in various fields: robotics, gaming, transportation and logistics

« Examples: Dijkstra, Greedy Best First Search, Hill Climbing, A* and Variants,
Theta*, D*

* (-) possible problems with high-dimensional spaces and dynamic obstacles, requiring
enhancements for adaptability and computational efficiency in large, complex domains

Source: PKumar, K. Pal, M.Govi, Comprehensive Review of Path Planning Techniques for UAVs, ACM Computing
Surveys, ACM 0360-0300/2025/05-ART, http://dx.doi.org/10.1145/3737280
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3.4 Path Planning Methods
Classification of UAV PP methods —criteria: algorithm types

. sampling-based, heuristic, math models, bio-inspired, machine learning-based

« Mathematical Models

« They employ math. functions (e.g., Dubin, Bézier curves, Lyapunov function), utilized to
solve the geometry and UAV motion model- based trajectory-generating process

« The models may be based on optimization, control/graph theory, or other maths.

 they can represent the constraints, objectives and UAV dynamics; account for other
aspects (cost, time, and energy)

 (-) can be computationally intensive and often require prior environmental knowledge

* (-) problems in integrating dynamic obstacles, complex terrains, and constraints like
energy consumption

» Linear Programming (LP)

 solves optimization problems in which linear equations or inequalities represent the
objective and constraints; LP minimizes or maximizes a linear function when applied
to certain conditions

e Basic LP

» generate the best solution to a wide range of problems, including issues in path
planning Binary linear programming (BLP), mixed integer linear
programming (MILP) and non-linear programming (NLP)

« LP PP can identify optimal paths, while minimizing distance, time, or energy
consumption
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3.4 Path Planning Methods
Classification of UAV PP methods —criteria: algorithm types

« Mathematical Models (cont'd)
» Linear Programming (cont’d)
* Mixed Integer Linear Programming (MLP)

« MILP - dynamic and robust tool for large, complicated problems with both
continuous and discrete variables

 Examples
« discrete rescue PP model in a dynamic environment

» path optimization for multi-UAVs with collision avoidance and maximization of
the fleet utilization in 3D environment

 scalable and robust trajectory generation scheme for multi-target PP
* Non-Linear Programming (NLP)
» NLP optimizes an objective function (relationships between variables are non-linear)

* NLP can handle complex problems; suitable for real-world scenarios with dynamic
environments and non-linear constraints

 Examples

« optimization trajectory framework by decoupling state variables from temporal
factors, dividing a complex NLP problem into two simpler NLP subproblems

« control system for tracking highly mobile targets
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3.4 Path Planning Methods
Classification of UAV PP methods —criteria: algorithm types

« Mathematical Models (cont'd)

* Non-Linear Programming (NLP) (contd)
 Examples

« optimizing the UAV trajectory, energy efficiency, and data collecting interval for
each ground sensor nodes

« double-loop iterative algorithm utilizing the UAV mobility pattern and developing
an energy-efficient trajectory generation scheme in a dynamic environment

» Control Theory- based methods

» They design and analyze control systems, including feedback control, optimal control
and adaptive control

* In PP they design control laws that manipulate the inputs to the UAV (thrust, attitude,
etc.), to achieve a desired objective (stability, accuracy, efficiency, or performance)

 Examples: Model Predictive Control (MPC), Bézier curves, Dubin algorithm,
Lyapunov function, Markov decision model and others

» (+)LP/variants, Bézier curves, and Dubin trajectories, offer precision and efficiency
* (+)Lyapunov-based methods ensure path stability

* (+) Markov models and MPC address environmental uncertainties robustly

» Bézier curves, Dubin trajectories and MPCs are suitable for military apps and r.t.
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3.4 Path Planning Methods
Classification of UAV PP methods —criteria: algorithm types
« Mathematical Models (cont’d)

« Control Theory- based methods (contd)
» Bézier Curve
» BC approximates a real-world shape that otherwise has no mathematical
representation or whose representation is unknown or too complicated
» In PP the B curves are used to define the shape and curvature of the path, taking
into account the constraints and objectives of the problem

« Examples: Multi-step process for creating smooth, practical paths for UAVs in
the 3D environment, Combined GA and Bézier curve; GA generates the path,
and the Bézier curve makes the obtained path smoother for multi-UAV systems

* Dubin Trajectory

» [Note: In geometry the Dubin path is the shortest curve that connects two points in the 2D
Euclidean plane with a constraint on the path curvature and with prescribed initial and
terminal tangents to the path, and an assumption that the vehicle moves unidirectionally]

« The Dubin trajectory in UAV PP supports navigating between points in a plane
with a minimal turning radius, offering precise and smooth flight paths

« Examples:

* R.t. trajectory planning scheme for flight line tracking utilizing Dubin's path
generation to account for the dynamic restrictions of UAV

* Dubin path combined with path-oriented RRT*, to meet UAV dynamic
constraints
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3.4 Path Planning Methods
Classification of UAV PP methods —criteria: algorithm types

« Mathematical Models (cont’d)
» Control Theory- based methods (contd)
* Model Predictive Control (MPC)

* |t offers r.t adaptability and precision by forecasting and optimizing future trajectories
based on current and anticipated environmental conditions and constraints

« Examples

Used where the system's dynamics are highly nonlinear or uncertain or where
there are significant time delays or constraints on the control inputs

(+) Low computational cost for high-dimensional systems with nonlinear
dynamics

Cooperative minimum time PP scheme for multi-UAVs using nonlinear dynamics
* |t considers the synchronicity formation of the network
* It could be used for systems with many UAVs
* (-) it doesn't consider obstacles

Combined MPC and Improved Grey Wolf Optimizer (IGWO) to generate
optimal trajectories in a highly dense environment

Learning Based MPC (LBMPC) for trajectory planning for multi-UAV cooperating
to execute a required mission

* (-) group formation control of multi-UAVs - is computationally expensive
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3.4 Path Planning Methods
Classification of UAV PP methods - criteria: algorithm types

« Mathematical Models (cont'd)
» Control Theory- based methods (contd)
« Markov Decision Process (MDP) represents the system behavior over time
» widely used for PP using Deep Reinforcement Learning (DRL)
 (-) complexity for PP in dense and uncertain environments
 Examples
* Partially observable MDP scheme for UAV PP in a dynamic environment.

» Fast MDP(FMDP) - can solve a specific subclass of MDPs quickly and
illustrates how to keep a safe distance in real-time and avoid collisions

» Lyapunov Vector Field Guidance (LVFG)- framework for assessing system
stability and convergence
« UAV PP involves defining objectives and constraints and modeling the UAV and
environment, which measures path stability and convergence
« Examples
* LVFG used for 3D UAV PP
« bifurcation theory-based PP for UAVs targeting dynamic ground objectives

 feedback control to get the UAVs closer together, a variable airspeed
controller to keep the UAVs at different angles

« graph theory to follow moving targets
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3.4 Path Planning Methods
Classification of UAV PP methods — criteria: algorithm types

Bio-inspired algorithms
» They typically deconstruct an environment into a searchable problem space using
exclusively approximate cell decomposition approaches
 Examples: Ant Colony Optimization (ACO); Particle Swarm Optimization (PSO) etc.
» Ant Colony Optimization (ACO)
» Sl-based algorithm inspired by the collective behavior of ants
The standard algorithm is inherently parallel and straightforward to execute
The walking path of ants is used to express the feasible solution
Each ant is intended to search for the shortest path in the free space

Over time: continuous increase in the concentration of pheromones along
shorter paths - a corresponding rise in the preference of ants for those paths

This reinforcement mechanism eventually converges, guiding the entire ant
colony toward the identification of the optimal path

Nest Nest Nest

Source: W. Meng, X.Zhang, L.Zhou, H. Guo and
X.Hu , Advances in UAV Path Planning: A
Comprehensive Review of Methods, Challenges,
F and Future Directions, MDPI, 2025,
o HC https://doi.org/10.3390/drones9050376

Food Food Food
) 2) 3)

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.ldoumghar, UAV Path Planning Techniques: A Survey, RAIRO-

Oper. Res. 58 (2024) 2951-2989 RAIRO Operations Research, https://doi.org/10.1051/ro/2024073 www.rairo-ro.org
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3.4 Path Planning Methods
Classification of UAV PP methods — criteria: algorithm types
* Bio-inspired algorithms (cont’'d)
« Ant Colony optimization (ACO) (cont’d)
« ACO Problems:

* (-) local optima and slow convergence in complex scenarios; it is sensitive to
objective function choices and parameters; it can be computationally
demanding in complex problems

 Examples

 low-altitude PP and adjusting pheromones adaptively

* multi-UAV PP, incorporating threat modelling and coordination functions

 optimal for border surveillance, considering sensing, energy, and risk factors
« ACO Extensions

 optimal solutions for large domains; multi-UAV operations and multi-depot PP

» dynamic green ACO algorithm for energy efficient PP

* joint PP approach for UAV-assisted loT systems

« optimal PP across multiple heterogeneous UAVs

« parallel Self-Adaptive ACO for coverage PP, improving speed and performance

» enhanced dynamic obstacle avoidance with an elite-ACO scheme, focusing on path selection
and pheromone updating

Swource: PKumar, K. Pal, M.Govi, Comprehensive Review of Path Planning Techniques for UAVs, ACM Computing
Surveys, ACM 0360-0300/2025/05-ART, http://dx.doi.org/10.1145/3737280
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3.4 Path Planning Methods

Classification of UAV PP methods — criteria: algorithm types
* Bio-inspired algorithms (cont’'d)

« Particle Swarm optimization (PSO)

« PSO simulates the social behavior of a swarm of birds or a school of fishes

Optimization - by utilizing the shared information of the global and local solutions in
the swarm

PSO- widely used for finding optimal solutions in UAV PP
PSO excels in PP due to its effective search process
PSO Actions summary
« Simple agents, called particles, move in the search space
The position of a particle shows a candidate solution/path

Each particle velocity: subject of systematic adjustments in adherence to
defined rules, aimed at refining their positions within the search space

Concurrently, the collective intelligence of the best solution is captured and
communicated to fellow particles in subsequent iterations

When the stopping conditions are reached the algorithm stops and the best
solution is recorded as a safe and feasible path

Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity
Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.ldoumghar, UAV Path Planning Techniques: A Survey, RAIRO-
Oper. Res. 58 (2024) 2951-2989 RAIRO Operations Research, https://doi.org/10.1051/ro/2024073 www.rairo-ro.org
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3.4 Path Planning Methods
Classification of UAV PP methods — criteria: algorithm types
* Bio-inspired algorithms (cont'd
« Particle Swarm optimization (PSO) (cont'd)
 PSO Problems
* (-) speed and global convergence limitations
* (-)traditional PSO variants often face early convergence and limited search scope
« PSO Algorithms Extensions
* maximum density convergence DPSO (MDC-DPSO)
» fast cross-over DPSO algorithm (FCO-DPSO)
 accurate coverage exploration DPSO algorithm (ACE-DPSO)
» PSO-based scheme to improve convergence and avoid local optima.
* hierarchical, multi-objective PSO algorithm focused on Pareto dominance

 coordinated PP for UAVs, addressing flight time and obstacle avoidance, using
a Spatial Refined Voting scheme for better convergence

» motion-encoded PSO for dynamic targets, encoding UAV motion in particle
generation

« enhanced PSO by maintaining population diversity and introducing probabilistic
mutation for better optimization.

» spherical vector-based PSO for complex environments, correlating particle
positions with movement vectors for optimal path finding
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3.4 Path Planning Methods
Classification of UAV PP methods — criteria: algorithm types
* Bio-inspired algorithms (cont’'d)

» Gray Wolf Optimization (GWO)
» Metaheuristic algorithm that mimics the hunting behavior of grey wolves to find
optimal solutions for various problems. It uses hierarchical ranks of wolves: (a), (B),
(), (w) and their hunting process to guide the population of candidate solutions
towards the best solution.
» Core Concepts
« Social Hierarchy: (a) strongest- the best solution found so far; then - (B), (d), (w)
« Hunting Mechanism steps: Searching, Encircling, Attacking.

+ Mathematical Model: Math. equations used to update the positions of the
wolves, simulating these hunting and hierarchy behaviors

. Workmg steps

« Initialization: a random population of candidate solutions is created

* Fitness Evaluation: the fitness of each wolf is calculated

- Best Wolves Identification: The wolves with the best fithess (a), (B), (d) are
identified

» Position Update: The other wolves (w) update their positions based on the positions
of the (a) (B), () wolves, simulating the encircling and attacking phases

* New Generation: This process continues to create new generations of wolves until
the optimal solution is found, or a stopping criterion is met
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3.4 Path Planning Methods
Classification of UAV PP methods — criteria: algorithm types
« Bio-inspired algorithms (cont'd)
» Gray Wolf Optimization (GWO) (cont'd)
 (+) Simplicity and Flexibility
 (+) Competitive performance w.r.t other metaheuristics
* (-) Slow convergence and Poor exploration
* Improved GWO variants examples
 Ensemble GWO (EGWO)
* Representative-based grey wolf optimizer (R-GWO)
* Reinforcement learning - based GWO (RLGWO)

« Evolutionary Based Algorithms
* Differential Evaluation (DE)

» DE evolves a population of potential paths using objective functions, such as
travel distance or time

» Through inheritance, crossover, and mutation, it iteratively refines paths until
an optimal solution is found, or a predetermined limit is reached, proving
versatile in various UAV PP cases

Swource: PKumar, K. Pal, M.Govi, Comprehensive Review of Path Planning Techniques for UAVs, ACM Computing
Surveys, ACM 0360-0300/2025/05-ART, http.//dx.doi.org/10.1145/3737280
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3.4 Path Planning Methods
Classification of UAV PP methods — criteria: algorithm types
* Bio-inspired algorithms (cont’'d)
» Evolutionary Based
« Genetic Algorithm (GA)
* GA PP leverages principles of natural selection and genetics to iteratively

evolve optimal UAV navigation routes through selection, crossover, and
mutation

 (-) Convergence speed performance is imprecise, resulting in an inefficient
optimization process, especially for real-time scenarios

* Improvements: modified target function, population initialization, selection, and
mutation phases

« Combined the advantages of DL and GA in DL-GA algorithm

« AI/ML- based Path Planning methods (short summary)

« Artificial intelligence methods - significant progress for UAV PP
« efficient navigation in complex and dynamic environments
* ML, RL, DL algorithms have been developed to optimize trajectories, enhance
obstacle avoidance, and meet r.t. computational demands

W. Meng, X.Zhang, L.Zhou, H. Guo and X.Hu , Advances in UAV Path Planning: A Comprehensive
Review of Methods, Challenges, and Future Directions, MDPI, 2025, https.//doi.org/10.3390/drones9050376
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3.4 Path Planning Methods
Classification of UAV PP methods — criteria: algorithm types
 Al/ML- based Path Planning methods (cont'd)

Machine learning (ML) algorithms are recently proposed in UAV PP area

ML algorithm types : Supervised Learning, Unsupervised learning, Reinforcement
Learning (RL), Deep Learning (DL), Deep Reinforcement Learning (DL), etc., learn
from existing data to build and refine models to solve different tasks.

ML applied in UAV PP area: clustering methods (QT and K-means), DL, RL, DRL,
cooperative and geometric learning, etc. —used for UAV PP and collision avoidance
ML-based applications in UAV -examples:

+ to deal with different perspectives of autonomous UAV flights including tuning the parameters for
the controller

 adaptive control algorithms for autonomous flight

* recognizing objects in farming; real-time path planning

« real-time collision avoidance considering obstacles or other aerial vehicles

+ decisions within environment problem space, seeking to optimize a given cumulative reward (RL)

Refs: J.L. Junell, E.J. Van Kampen, C.C. de Visser and Q.P. Chu, Reinforcement learning applied to a quadrotor
guidance law in autonomous flight, in AIAA Guidance, Navigation, and Control Conference. American Institute
of Aeronautics and Astronautics, Inc. (2015) 1990.

G. Kahn, A. Villaflor, V. Pong, P. Abbeel and S. Levine, Uncertainty-aware reinforcement learning for collision
avoidance. Preprint arXiv:1702.01182 (2017).

R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity
Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.
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3.4 Path Planning Methods
Classification of multi-UAV PP methods — another view:

. criteria : classical/hybrid, metaheuristic/hybrid, heuristic/hybrid, ML/hybrid

3. Path Planning in Multi-UAV Networks
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3.4 Path Planning Methods
Classification of multi-UAV PP methods :

« criteria : classical/hybrid, metaheuristic/hybrid, heuristic/hybrid, ML/hybrid

Recall - Notes:

* Heuristic technique (problem solving, mental shortcut, rule of thumb) - any
pragmatic approach to problem solving that, not fully optimized, perfected, or
rationalized, but "good enough” as an approximation or attribute substitution.

» Metaheuristic - high-level, problem-independent algorithmic framework providing
guidelines for developing heuristic optimization algorithms in complex problems, (e.qg.
when exact solutions are computationally infeasible). It can find, generate, tune, or
select a heuristic (partial search algorithm) that may provide enough good solution to
an optimization problem. Metaheuristics act as strategies for finding optimal
solutions by intelligently exploring vast solution spaces.

* Main Characteristics

* High-level: general strategies, not specific algorithms for a single problem

* Problem- independent: the framework can be adapted to a wide range of
optimization problems

» Heuristic nature: no guarantee on finding the absolute optimal solution but aim
for sufficiently good ones

» Exploration of large solution spaces: effective at searching large sets of possible
solutions
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3.4 Path Planning Methods

Classification of multi-UAV PP methods

. criteria: classical/hybrid, metaheuristic/hybrid, heuristic/hybrid, ML/hybrid
« Statistics on Multi-UAV Path Planning — methods published 2021-2025

Classical ) .
2.5%, Machine Learning

19%

Hybrid
36.7%

Heuristic
3.8%

Metaheuristic
38%

Source: M.Rahman, N.Sarkar and R.Lutui, A Survey on Multi-UAV Path Planning: Classification,Algorithms,
Open Research Problems, and Future Directions, MDPI,Drones 2025,9,263 https://doi.org/10.3390/drones9040263
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s 4. Challenges and Open Problems

« Summary of challenges in Multi-UAV Path Planning

« Key challenges: communication and collaboration, obstacle avoidance, safety
and reliability, security, energy efficiency

« Consider dynamic 3D environments — to adapt adapting PP algorithms to changing
conditions

 Reduce system complexity and computational costs - with environmental
complexity and the number of UAVs

» R.t. path adjustments and efficient communication among UAVs to prevent collisions
* Integrate AI/ML algorithms and methods in Multi-UAV Path Planning

» Special scenarios path planning

IARIA NetWare 2025 — October 26-30, 2025 Barcelona, Spain Slide 66



s 4. Challenges and Open Problems

« Summary of Open Research Problems
* PP Algorithms

» To adapt classical algorithms for larger, dynamic environments in order to
enhance their applicability

« R.t. algorithms need to be further developed for PP in complex 3D environments
» Metaheuristic approaches should focus on decentralization and r.t. optimization

 Hybrid algorithms need to be tested in real-world scenarios to ensure
effectiveness

Obstacle and collision avoidance

« Enhance heuristic approaches to improve scalability and collision avoidance
Communication and Collaboration

* Improving the communication protocols for seamless coordination among UAVs
Energy efficiency

» Extending operational range and duration by improving energy efficiency
Complexity and cost

* Reduce system complexity and computational costs while maintaining high-quality
solutions.
Al/ML approach

» Al/ML integration while considering computational resource demands and
adaptability
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tiia 4. Challenges and Open Problems

Specific Topics

Path Planning in 3D environments and time domain
 Enhanced optimization methods are needed for real time in 3D space

« Consider kinematic, geometric, physical and temporal constraints, flight risk
levels, airspace restrictions, etc.

« 3D UAV PP in complex environments (urban areas, caves, forests etc.)

Mathematical models for the PP
» Multi-objective functions, (Pareto...) to make the math UAV PP models more realistic

» Multiple types of static and dynamic constraints are necessary to be considered in PP
models

Experimental work
* More work is necessary with real experiments. Issue: number of UAVs considered
» Real time aspects to be considered

Optimization techniques
« Many optimization algorithms and methods have been already studied:

« Sampling-based, Node -based, Mathematic Model- based, Bioinspired
Multifusion-based, Al, etc.

« Combining different methods, such as Al-based ( NN, DEL RL, DRL..) evolutionary
algorithms with heuristic, fuzzy inference methods
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Specific Topics

Integration of different segments
* The integration and communication of UAVs with terrestrial and space

* integrate different spaces connected to each other via communication
protocols

 Different factors need to be considered: data rate, coverage. scalability,
reliability, security

Security and privacy

» Security and privacy should be considered at each architectural layer: application,
transport, network and physical layer

* Privacy needs to be addressed more in future work, given the UAV’s connectivity to
ground and air space, large amounts of data need to be stored securely

UAVs in smart cities
 Integration between UAVs and other means of transport (trucks, buses, etc.)

* Policies to encourage the use of UAVs are developed, promoting the economy of the
sector, together with the development of new technologies such as

* DAA (Detect and Avoid)
« UTM (UAS Traffic Management), etc.

» Airspace regulations to govern the development and operation of real UAV
applications in different environments
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Specific Topics
3D Environment complexity issues
» Solutions

o Split the problem into more manageable chunks, e.g. fixing of a UAV 3D altitude;
PP becomes a 2D problem

o Find some means for offloading some computational task from UAVs
The binary choice between a known/ unknown environment is a notable limitation

To define bounds for how much complete and accurate pre-existing environmental
knowledge must be

Further research - to select the best method in static/dynamic or a
known/unknown vs environment

Potential solutions
- Exploration of the hybrid environment planning
o pre-planning a path with a static representation of the environment

o dynamic unknown obstacles to be evaluated during the flight, with minor
changes supplied to a global path

- Individual ability of a UAV to map or sense surroundings throughout an unknown
environment

Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity
Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.
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4. Challenges and Open Problems

» Specific Topics

« Communication and collaboration

New algorithms need to be developed to optimize coverage time.

The system must monitor the connectivity between UAVs and the ground control
station

Multi-hop connectivity of many UAVs is necessary to guarantee redundancy

Effective resource utilization is essential in order to avoid communication losses

Algorithms should be able to manage seamless communication for numerous UAVs
in a complex environment.

Facilitating the sharing of drone data, position, and status is required

One UAV needs to act as controller to maintain the formation during swarm
operations

 |f controller failure, another UAV should take the controller role.
Decentralization of the control system should be possible with an advanced algorithm

The communication protocols should be able to reduce communication time and
packet loss
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5. Conclusions

Path Planning- essential aspect in Multi-UAV systems
Many traditional algorithms have been re-used/adapted/developed for UAV environment

Many open research issues exist, (many requirements, constraints and factors)

3D space, static/dynamic environment, energy consumption requirements, specific types
of UAVs and journey ranges, real-time problems, security and privacy, partial knowledge
on environment (including static/dynamic obstacles), cooperative tasks for swarms, etc.)

PP algorithms:

Enhancements are needed to allow more significant number of UAVs, real-time efficient
PP, better adapted to changes in ever-changing environments (obstacles, weather etc.).

System efficiency needs to be increased

Enhance coordination and communication among UAVs to optimize group behavior and
task allocation.

Optimize and balance multiple objectives (minimizing risk, conserving energy, reducing
travel time, etc.)

Reduce system complexity and costs
Integrate novel techniques based on Al/ML
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« List of general Acronyms

5G-AN 5G Access Network FRz Flight Restriction Zone

ABC Artificial Bee Colony GBFS Greedy Best-First Search

ACO Ant Colony optimization GDGACO Gain-Based Dynamic Green ACO
AEO Artificial Ecosystem Optimizer GEO Golden Eagle Optimizer

Al Artificial Intelligence -

ANN ANN Artificial Neural Networks or Clraedly oz el

AGWO Adaptive GWO GNSS Global Navigation Satellite System
AODV Ad Hoc On Demand Distance Vector GS Ground Station

APF Artificial Potential Field GWO Grey Wolf Optimizer

ARA* Anytime Repairing A* HRP Hybrid Routing Protocol

BA Bat Algorithm HTOL Horizontal Takeoff and Landing
BFS Breadth-First Search ILP Integer Linear Programming

BLP Binary Linear Programming IMOPIO Improved Multi-Objective PIO

L Cllow Cemp iy IPP Informative Path Planning

o Coirirel] Az IPA Immune Plasma Algorithm

CPP Coverage Path Planning :

CR T o loT Internet of Things

CSA Cuckoo Search Algorithm KF Kalman Filter )

D2D Device to Device communication L7 L}/apunov Funcltlon

DES Depth-First Search LQR L!near-Quadratlc Begulator

DL Seer Loy LP Linear Programming

DN Data Network MANET Mobile Ad hoc Network

DN DEED NEUR N GRS MAC Medium Access Control

DRL Deep Reinforcement Learning MCC Mobile Cloud Computing

D Dl o Senies MDP Markov Decision Process

DP Data Plane (User Plane UP) ; . .
DPMC Distributed Model Predictive Control MEC Multi-access (Mobile) Edge Computing
DTN Delay Tolerant Network MILP Mixed-integer Linear Programming
E2E End to End ML Machine Learning

EHO Elephant Herding Optimization MOP Multi-Objective Optimization Problem
FA Firefly Algorithm MPC Model Predictive Control
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« List of general Acronyms

NF Network Function

NLP Non-Linear Programming

OPP Optimal Path Planning

PIO Pigeon Inspired Optimization

PP Path Planning

PRM Probabilistic Roadmap

PRP Proactive Routing Protocol
PSA-ACO Parallel Self-Adaptive ACO

PSO Particle Swarm optimization
QoE Quality of Experience

RAN Radio Access Network

RL Reinforcement Learning
RLGWO Reinforcement learning based GWO
RRP Reactive Routing Protocol

RRT Rapidly-exploring Random Trees
SCF Store-carry-and-forward

SDN Software Defined Networking

TS Tabu Search

UAV Unmanned Aerial Vehicle
UAVNET Unmanned Aerial Vehicle Network
UAV-BS UAV- Base Station

UAV-RS UAV Relay Station

UL Uplink

V2X Vehicle-to-everything

VD Voronoi Diagram

VANET Vehicular Ad hoc Network

VG Visibility Graph

VM Virtual Machine

VTOL Vertical Takeoff and Landing
WDQN Whale inspired deep Q-network
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Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods (Cont’d - Details)

« Cell decomposition
« Approximate Cell Decomposition

It overlays a regular grid structure upon the environment space

Decomposition into a set of structured cells: each cell’s location within the
environment is represented by a Cartesian coordinate system

The boundaries of cells remain rigid, such that they may not precisely correlate
with objects and obstacles within the environment

A cell’s total internal space is composed of free space and obstacle space
A cell only partially filled by an obstacle is classified as obstacle space
Implementation variants: 2D or 3D

a) b)
Example: 2D Cell Movement Possibilities

EE UAV Occupied Cell

- Possible UAV Cell Movement

Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity
Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.
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3.3 Environment Representation Methods {DETAILS)

» Cell decomposition (cont’d)

» Exact Cell Decomposition
» The space is divided into several non-overlapping polygon regions
» Approaches:
« Trapezoidal: the space is split in distinct convex cell regions

* The method typically sweeps vertically left to right across the environment,
appending vertical deconstruction lines, where an obstacle vertex is
encountered

» Boustrophedon: It minimizes the coverage path length in comparison to the
trapezoidal, through reducing the number of polygon cell regions created

a) Trapezoidal Decomposition® b) Boustrophedon Decomposition*®*

4 12
4 6 9 7 ‘

3 3

* Only Convex cells are constructed

[ Environment Obstacle # | Polygon Cell Region @ Start Location @ Target Location +* Non-Convex colls are constructed

Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity
Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.
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3.3 Environment Representation Methods (Details)

» Cell decomposition (cont’d)
« Exact Cell Decomposition (cont'd)

» Note: Boustrophedon is a style of writing in which alternate lines of writing are reversed,
with letters also written in reverse, mirror-style

» Between cell regions, an adjacency relationships can be defined, leading to a
connectivity graph

« The graph nodes are placed in the free space cell region locations

» Result: a continuous free space path can be planned across the environment
space based upon cell region relationships

Trapezoidal conversion to Adjacency Graph
a) Trapezoidal Decomposition b) Adjacency Graph

6
4 6 9

5 7 10 11

3

[ Environment Obstacle # | Polygon Cell Region @ Start Location @ Target Location @ Adjacency Node —— Adjacency Edge

Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity
Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.
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3.3 Environment Representation Methods (Details)

« Cell decomposition (cont'd)
« Adaptive Cell Decomposition (applicable to 2D and 3D space)
* |t deconstructs the environment only where an obstacle’s presence requires

» For a PP scenario an adaptive schema called (Quadtree) is constructed by dividing
the space into four equal sub-regions

 Where an obstacle exists, then regions are further recursively decomposed
into four supplementary child regions until the desired stopping condition is met

» Cell decomposition define both free and obstacle space, so the range of movement
available to UAVs within free space is unbounded

* Results: large search space for any PP algorithm

« Roadmap Representation
» Connectivity graph is constructed; the nodes represent key free space locations
* The graph construction strategies can be different

 The edges may have weights (e.g., related to time or distance); they represent the
ability to transit safely between the adjoined nodes

» This reduction of an environment into a graph-based structure, is similar to a
classical route planning optimization problem

» where optimal routes are identified by comparing the sum of edge weights in
candidate paths (additive metric)

« A PP algorithm is applied to this arrangement to discover an optimal path
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3.3 Environment Representation Methods (Details)

Roadmap Representation (cont’d)
* Visibility graphs (VG)

» Let it be a set O of pairwise disjoint objects in the plane (considered as obstacles in
UAV motion planning)

* The visibility graph is a representation model

» For polygonal obstacles the vertices of these
polygons are the nodes of the visibility graph

« Two nodes are connected by an arc if the
corresponding vertices can see each other

* Algorithms for computing the visibility
graph of a polygonal scene have been
developed

« Computing the visibility graph: different
complexity orders exist, for a polygonal scene
with a total of n vertices: e.g., O(n?log n), O(k + n
log n) (k is the number of arcs of the visibility
graph)

* Weakness: in the construction process,
generated paths pass within close proximity to
the obstacles they seek to avoid

Figure- Source: M. N.Bygi, 3D Visibility Graph,
https://sharif.edu/~ghodsi/papers/mojtaba-nouri-csicc2007.pdf
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3.3 Environment Representation Methods (Details)

3. Path Planning in Multi-UAV Networks

 Roadmap Representation (cont’d)
Voronoi diagrams and path solutions

Let P ={p,, Py, ---P,} D€ a set of points (called sites) in a 2D Euclidean plane

The space is decomposed into regions around each site, s.t. all points in the
region around p, are closer than to any other point in P

For UAV movement, one can consider the points in P as representing
obstacles/threats

The cells edges can be available paths (of an UAV) to the nearest node to the
target positions

A PP algorithm searches the shortest path to go to the nearest node to the
target positions

O Environment Obstacle
. Start Location

. Target Location

—— Equidistant Edge
—— UAV Path Solution

Source: Tong, Wu Wen chao, H. Chang qiang, X. Yong bo, Path Planning of UAV Based on Voronoi Diagram
and DPSO H., Elsevier, Procedia Engineering 00 (2011) 000—000 4198 — 42031877-7058,
doi:10.1016/j.proeng.2012.01.643, www.Sciencedirect.com
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3. Environment Representation

3.3 Environment Representation Methods (Details)
 Roadmap Representation (cont'd)

* Probabilistic Roadmap

Visibility graph and Voronoi: the path generation is dictated solely by the
placement of obstacles within the environment

A probabilistic approach deconstructs the available free problem space into
a set of randomly placed connectivity nodes

Connecting nodes with edges is based upon proximity to a nearest
neighbor node, combined with the perceived visibility and ability to pass
unhindered between nodes

In path construction a significant level of environment knowledge is required

This construction method does not provide an optimal solution, but is able to
guarantee completeness based upon the increasing number of nodes added

A motion planner is said to be complete if the planner, in finite time, either
produces a solution or correctly reports that there is none

Source: M. Farooq et al., Quadrotor UAVs flying formation reconfiguration with collision avoidance using
probabilistic roadmap algorithm. In 2017 International Conference on Computer Systems, Electronics and
Control (ICCSEC), pages 866—-870. IEEE, 2017.
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3.3 Environment Representation Methods (Details)

« Roadmap Representation (cont'd)
e Rapidly-exploring Random Trees (RRTs)

e RRT focuses upon a randomized approach for exploration of the environment

e The algorithm searches nonconvex, high-dimensional spaces by randomly building a space-
filling tree

e An explorative branching strategy is applied; branching paths are constructed originating from a
root node

e The tree is constructed incrementally from samples drawn randomly from the search space
and is inherently biased to grow towards large unsearched areas of the problem

e Ahigh level of environment knowledge is required in tree construction to allow successful
placement of future nodes

e RRT offers a configurable strategy to manage tree growth and exploration of the problem space

y %

Source: S.M. LaValle et al. Rapidly-exploring random trees: A new tool for path planning. 1998 Technical
Report (TR 98—11). Computer Science Department, lowa State University..
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3.3 Environment Representation Methods (Details)
 Roadmap Representation (cont'd)

e Rapidly-exploring Random Trees (RRTs) (cont’'d)
e RRT

e can handle problems with obstacles and differential constraints
(nonholonomic and kinodynamic) and can be used in autonomous robotic/UAV
motion planning

e generates open-loop trajectories for nonlinear systems with state constraints

e can also be considered as a Monte-Carlo method to bias search into the
largest Voronoi regions of a graph in a configuration space

e Note 1: A nonholonomic system: - definition
e a mechanical system with velocity constraints not originating from position
constraints (e.g.: rolling without slipping)
e its state depends on the path taken in order to achieve it
e the system is described by a set of parameters subject to differential constraints
and non-linear constraints
e Note 2: Kinodynamic planning (In motion planning), is a class of problems for
which velocity, acceleration, and force/torque bounds must be satisfied, together
with constraints such as avoiding obstacles
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3.3 Environment Representation Methods (Details)
« Artificial Potential Field (APF)
e The cell decomposition and roadmap approaches build an environment
representation from prior known environment knowledge
e (APF) computes in real-time a directional force to be applied to a UAV, based on
e the gravitational attractive forces applied by goal or target locations
e the cumulative repulsive forces applied by obstacles
e In areal-world environment
e the gravitational force is proportional to the Euclidean distance from the UAV to
target locations
o the repulsive forces can be derived from mounted sensors capable of
calculating obstacle distance
e The UAV makes successive evaluation of the resultant forces
e The abstract representation of APF field forces provided across a whole
environment grants a UAV the potential for significant autonomy (to find a transit
path across an environment)
e APF enables a reactive path-planning; dynamic obstacles influence APF forces in
real-time allowing for adaptive navigation decisions

N. He et al., Dynamic path planning of mobile robot based on artificial potential field, 2020 Int'| Conf. on Intelligent
Computing and Human-Computer Interaction (ICHCI), IEEE, 2020.
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3.5 Traditional Path Planning Algorithms
» Depth-First Search (DFS)

It traverses a tree by exploring one node and its descendants at a time; a node
is selected initially

The search is progressively expanded to the deepest nodes ( backtracking only
when there are no more child elements to explore)

If the deepest node does not contain the desired solution, the algorithm
backtracks to the start of the tree and continues the search by exploring adjacent
nodes on the right, following a similar deep format

This process continues until the solution is found
Problems:

 DFS may miss large portions of the workspace since it tries to search several
paths at a time before completing one path

 DFS may not always yield the optimal solution as it prioritizes the first
successful path found, disregarding the time or steps taken to reach it, with the
risk of falling into a loop of exploring an infinite depth

* DFS can be time-consuming because it may delve into uncharted depths of a
single node without necessarily leading to a viable solution

Source: L. Paulino, C. Hannum, A.S. Varde and C.J. Conti, Search methods in motion planning for mobile robots, in
Intelligent Systems and Applications, edited by K. Arai. Springer International Publishing (2022) 802—-822.
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3.5 Traditional Path Planning Algorithms
* Breadth-First Search (BFS)

* In BFS all the current level nodes are visited prior to their descendants, following a
systematic approach where shallow nodes are expanded first by exploring all the
subsequent level nodes along the path.

* DFS versus BFS
 DFS is exploring a single path to its deepest depths

« BFS expands its search by including all nodes within each layer, adhering to
the FIFO principle implemented through a queue structure.

* BFS could be slower than DFS in finding a path, however, it can be preferred
due to its systematic exploration of all nodes within each layer; it is able to keep
track of visited nodes before moving on to the next layer.

* BFS requires more memory compared to DFS due to the need to store all visited
nodes in the order they were encountered

» This storage step is important in BFS tree traversal as it influences the
sequence in which the algorithm explores nodes in the subsequent layer

Source: L. Paulino, C. Hannum, A.S. Varde and C.J. Conti, Search methods in motion planning for mobile robots, in
Intelligent Systems and Applications, edited by K. Arai. Springer International Publishing (2022) 802—-822.
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3.5 Traditional Path Planning Algorithms

» They are related to specific representations of the environment
 Dijkstra Algorithm
» Classical solution to solve the shortest path problem

* It make a breadth first state space search looking for the shortest distance of any
point in the whole free space, layer by layer, through the initial point until it reaches the
target point

* Issue: In UAV PP, due to the use of free search, the amount of data of Dijkstra
algorithm is greatly increased, which affects the speed of solution
 Different researchers have improved and optimized Dijkstra algorithm
« A* (A-Star)
» Used in path finding problems on graphs and meshes

It is using a heuristic function to perform an informed search, to estimate the
cost of the remaining path to the goal

It has fast calculation speed and can efficiently obtain UAV path information.
It is efficient in environments with precise and known information

Issue: its performance degrades in complex and unknown 3D environments (lack
of enough information about space structure)

Source: C. G. Arnaldo , M.Z. Suarez , F.P.Moreno and R.Delgado-Aquilera Jurado, Path Planning for Unmanned Aerial
Vehicles in Complex Environments Drones 2024, 8, 288. https://doi.org/10.3390/drones8070288
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3.5 Traditional Path Planning Algorithms

D* (D-Star)

« D* - real-time search algorithm that recalculates the route when changes occur
in the environment; It is suitable for dynamic environments

* Issue: its computational complexity can be high (e.g., in 3D, with many moving
objects and obstacles
* Theta* (Theta-Star)

* It is an improvement of A* that performs a search in the discretized search space
using linear interpolation to smooth the path
« Theta* can produce more direct and efficient trajectories than A*

 Issue: lower performance in environments with multiple obstacles and complex
structures

* PRM (Probabilistic Roadmap)
* |t creates valid paths through the random sampling of the search space

* Issues:
* it can generate valid trajectories, but its efficiency is lowering by the density
of the search space
* it may require a high number of sampling points to represent accurate
trajectories in a 3D environment with complex obstacles
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3.5 Traditional Path Planning Algorithms

RRT (Rapidly Exploring Random Tree)

 RRT uses random sampling to build a search tree that represents the possible
trajectories of the UAV

* |t is widely used in PP for complex and unknown 3D environmentswith obstacles
and unknown structures

* |t has a probabilistic nature and able to efficiently explore the search space

Note: Many other RRT variants have been developed in different studies

Examples

RRT* (Rapidly Exploring Random Tree Star)
* It is an enhanced RRT; it optimizes the trajectories generated by the original algorithm
* RRT* reduces the path length and optimizes the tree structure

* |t can provide optimal routes, but its computational complexity is higher in
complex 3D environments

RRT*-Smart

* |t accelerates the convergence rate of RRT* by using path optimization (in a
similar fashion to Theta*) and intelligent sampling (by biasing sampling towards
path vertices, which — after path optimization are likely to be close to obstacles)
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3.5 Traditional Path Planning Algorithms

* A*-RRT and A*-RRT*
* A two-phase PP method that uses a graph search algorithm

» 1. search for an initial feasible path in a low-dimensional space (not considering the
complete state space) avoiding hazardous areas and preferring low-risk routes

« 2. which is then used to focus the RRT* search in the continuous high-dimensional space

Real-Time RRT* (RT-RRT*)

« Avariant of RRT* and informed RRT* that uses an online tree rewiring strategy that allows the
tree root to move with the agent without discarding previously sampled paths, in order to obtain real-
time path-planning in a dynamic environment

Theta*-RRT

« Atwo-phase PP method similar to A*-RRT* that uses a hierarchical combination of any-angle
search with RRT motion planning for fast trajectory generation in environments with complex
nonholonomic constraints

.... other of RRT variants
Artificial Potential Fields

* |t uses attractive and repulsive forces to guide the UAV movement towards the goal and away
from obstacles

+ Transform the impact of targets and obstacles on the movement of the drone into an artificial
potential field; It can generate smooth trajectories

* Issue: it may suffer from local minima and oscillations in environments with complex
obstacles
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3.5 Traditional Path Planning Algorithms
Time complexity of the UAV path planning algorithms
Voronoi Diagram O(n log(n)) ; nis the number of the vertices

Visibility Graph 0(n?); nis the number of the vertices

PRM O(nlog(n)) ; nis the number of iterations

RRT O(n log(n)); n is the number of iterations

Dijkstra O(IE|+ |V | log|V]); Vis the set of vertices, E the set of edges
BFS & DFS O(E1+ V)

A* 0(n?) ; nis the number of vertices

Exact Cell Decomposition; O(n log(n)); nisthe number of obstacle vertices
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3.6 PATH Planning Algorithms Examples
« Algorithm 1 Standard Rapidly-exploring Random Trees (RRT) Algorithm

PP objective : to find a path from a starting position (xstart) to a goal position
(xgoal) through a configuration space.

1: Choose an initial node x;.;; and add to the tree t
2: Pick a random state x,,,, in the configuration space C
3: Using a metric r, determine the node x,_, in the tree that is nearest to x,_,,4

4: Apply a feasible control input u to move the branch towards x,,,, at a pre-
chosen incremental distance

5: If there is no collision along this branch, add this new node x_,,.,,to the tree t
6: Repeat steps 2 to 5 until xgoal is included in the tree ¢

7: Find the complete path from x;,; to x,,,

Source: S. M. LaValle, “Rapidly-exploring Random Trees: A New Tool for Path Planning,” 1998, TR 98-11,
Computer Science Dept., lowa State University.

Source: Mangal Kotharia lan Postlethwaiteb, Da-Wei Gua, A Suboptimal Path Planning Algorithm Using
Rapidly-exploring Random Trees, Int'| Journal of Aerospace Innovations, Volume 2 - Number 1&2 - 2010
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3.6 PATH Planning Algorithms Examples

Algoritm 2: Modified RRT Algorithm

* The tracking of the generated waypoints depends on the feedback control policy

* Theresultant path accuracy depends on the validity of the state space model being used. In
reality, there exist also sensor inaccuracies, wind effects and other unmodeled factors.

 Because of incremental growth, the path generated usually includes several extraneous
waypoints, which is undesirable (travel cost)

* RRT can be extended to generate paths in the output space

1: Choose an initial node w; ; and add to the tree t

2: Pick a random waypoint w,_,,, in the space C, with small probability, set w,,, 4
= Wy, to pull the graph towards the goal

3: Using a metric r, determine the node w, ., in the tree that is nearest w,_,,,

4: Extend the branch toward w,_,,, by an incremental distance while taking care
of the turn angle constraint

5: If there is no collision along this branch, add this new node w_,,,,, to the tree
6: Repeat steps 2 to 5 until w,,,, is included in the tree t

7: Find the complete path from w;,; to w,,,

Source: S. M. LaValle, “Rapidly-exploring Random Trees: A New Tool for Path Planning,” 1998, TR 98-11,
Computer Science Dept., lowa State University.
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Algorithm 3: PRM algorithm
Input: A graph with initial and goal points
Output: Find the shortest path between the start and goal

1 The vertices V — @

2 The edges E — @

3 while next vertex is not goal do

4 ¢ — a random configuration in the free space
SV—Vuc

6 Nc — a set of neighbor vertices chosen from V
7 for all ¢' € Nc do

8 if the line (c, c¢') is collision free then

9 add the edge (c, c') to E

10 Find the shortest path from the start point to the goal on the constructed
graph using a shortest PP algorithm

11 return The shortest path

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.ldoumghar, UAV Path Planning Techniques: A Survey, RAIRO-
Oper. Res. 58 (2024) 2951-2989 RAIRO Operations Research, https.//doi.org/10.1051/ro/2024073 www.rairo-ro.org
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3.6 PATH Planning Algorithms Examples
Algorithm 4: Reinforcement learning algorithm for UAV path planning.

Input: A state space §, an action space A, a reward function R(s, a), a discount factor
y, an exploration rate ¢, and a maximum number of episodes N

Output: A policy n(s) that maps states to actions
1 Initialize a Q-function Q(s, a) arbitrarily Initialize an empty replay buffer D
2 for episode =1 to N do
3 Initialize the state s, to the start position
4 while s, is not the goal position do
5 With probability e choose a random action at from A, otherwise choose a, = argmax,
Q(s,. a)
6 Execute action a, and observe reward r, and next state s,,,
7 Store transition (s,, a,, 7, S;+q) IN D
8 Sample a mini-batch of transitions (s;, a;, r;, s i,4) from D
9 Update the Q-function using the Bellman equation:
Qs a;) — Q(sy, @) + a (r; + y max, Qs 14, @) = Q(s;, @)
10 Set s, = 5,44
End while
End do
11 return The learned policy r(s) = argmax, Q(s, a)

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.Idoumghar, UAV Path Planning Techniques: A Survey, RAIRO-
Oper. Res. 58 (2024) 2951-2989 RAIRO Operations Research, https.//doi.org/10.1051/ro/2024073 www.rairo-ro.org
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3.7 Swarm Path Planning Algorithms — Examples
3D Path Planning

Improved GWO - for 3D PP determines a feasible flight trajectory while avoiding obstacles

* R. K. Dewangan, A. Shukla, andW.W. Godfrey, 3D path planning using grey wolf optimizer for UAVSs, Int. J. Speech
Technol., vol. 49, no. 6, pp. 2201_2217, Jun. 2019.

Probabilistic road map (PRM) - it finds a multi-trajectory PP for the UAV cluster

» The UAV swarm can reach different places (marked and unmarked) in different
situations and support emergency conditions in the city environment

« A. Madridano, A. Al-Kaff, D. Martin, and A. A. D. L. de la Escalera, 3D trajectory planning method for UAVs swarm in
building emergencies, Sensors, vol. 20, no. 3, p. 642, Jan. 2020.

Multi-swarm fruit fly optimization algorithm (MSFOA) — solves a non-linear optimization
problem with multiple static and dynamic constraints, through a multi-UAV collaborative PP
path on 3D rugged terrain

* K. Shi, X. Zhang, and S. Xia, Multiple swarm fruit fly optimization algorithm-based path planning method for multi-
UAVSs," Appl. Sci., vol. 10, no. 8, p. 2822, 2020.

Pigeon Inspired optimization (PIO) - the UAV is used for 3D oil field detection

» PIO optimizes the initial path, and then Fruit Fly Optimization Algorithm (FOA)
performs local optimization to avoid obstacles while finding the best path.

* F Ge, K. Li, Y. Han, and W. Xu, PP of UAV for oil field inspections in a 3D dynamic environment with moving
obstacles based on an improved pigeon-inspired optimization algorithm, Appl. Intelligence, 2020

Source: Y. Zhou, B. Rao, W. Wang, UAV Swarm Intelligence: Recent Advances and Future Trends, IEEE Access,
September 2020, DOI 10.1109/ACCESS.2020.3028865
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Dynamic Path Planning

* The PP has special requirements In dynamic environment contexts

* Multiple path and selection
» Several candidate paths are generated using the cubic spline second-order continuity
principle
» Atotal cost function is defined to select the optimal obstacle avoidance path

» This method has short time consumption and strong r.t. performance

« X. Chen, M. Zhao, and L. Yin, Dynamic path planning of the UAV avoiding static and moving obstacles, J. Intell.
Robotic Syst., vol. 99, nos. 3_4, pp. 909 _931, Sep. 2020.

« Adaptive route planning —in changing unknown condition, with complementary sensors
* Memory-based Wall Following-Atrtificial Potential Field (MWF-APF)

» The algorithm switches between Wall-Following Method (WFM) and Artificial Potential
Field method (APF) with improved situation awareness capability.

* |t solves some problems of the WFM and APF

* H. Wang, M. Cao, H. Jiang, and L. Xie, Feasible computationally effficient path planning for UAV collision
avoidance, Proc. IEEE 14 Int. Conf. Control Autom. (ICCA), Jun. 2018, pp. 576_581.
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3.7 UAV Swarm Path Planning Examples
Dynamic Path Planning (cont’'d)

 UAVs in complex outdoor environments (e.g., isolated disaster scenes)
Track detection and automatic scene understanding based on abstract vision

Method: Combine a support vector machine-based tracking detection and tracker
combination framework

Achieve tracking direction estimation and stalking with lower computation and input

Y. Liu, Q. Wang, Y. Zhuang, and H. Hu, A novel trail detection and scene understanding framework for a
quadrotor UAV with monocular vision, IEEE Sensors J., vol. 17, no. 20, pp. 6778 6787, Oct. 2017

» Path planning of UAVs based on collision probability

» A method for calculating the collision probabilities of UAVs under the constraints of mission space
and the number of UAVs

* In cluster flight mode, automatic tracking and prediction of UAV cluster tracks should be
implemented to avoid path conflicts

» To address the inconsistency problem because of noise caused by the state information of multi-
UAV communication, a state estimation method is proposed based on the Kalman algorithm

* [Kalman filtering (a.k.a linear quadratic estimation) uses a series of measurements observed over time
(including statistical noise and other inaccuracies), to produce estimates of unknown variables, more
accurate than those based on a single measurement, by estimating a joint probability distribution over the
variables for each time-step]

« Z Wu, J. Li, J. Zuo, and S. Li, Path planning of UAVs based on collision probability and Kalman filter, IEEE Access,
vol. 6, pp. 34237 34245, 2018.
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3.7 UAV Swarm Path Planning

Optimal PP- Examples

* Fixed-wing UAV-assisted mobile crowd perception (MCS)
* The joint PP and task allocation problems are considered aiming to energy efficiency

» The NP-hard joint optimization problem is transformed in bilateral two-stage matching
problem

» Good results in energy consumption, overall profit and matching performance

» Z. Zhou, J. Feng, B. Gu, B. Ai, S. Mumtaz, J. Rodriguez, and M. Guizani, When mobile crowd sensing meets UAV:
Energy-ef cient task assignment and route planning, IEEE Trans. Commun., vol. 66, no. 11, pp. 55626 5538, Nov.
2018.

* Group of heterogeneous fixed-wing UAVs with traversing multiple targets and
performing continuous tasks

» Optimal flight trajectory is found; a coupled distributed planning method combining
task assignment and trajectory generation is used

« The cooperative task planning problem is reconstructed

* The method improves the system operating rate; it can be applied to practical tasks

« W.Wu, X.Wang, and N. Cui, ‘Fast and coupled solution for cooperative mission planning of multiple
heterogeneous unmanned aerial vehicles,’ Aerosp. Sci. Technol., vol. 79, pp. 131-144, Aug. 2018.
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