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Path Planning Advances in Multi-UAV Networks

• Motivation of this talk

• UAV(drones) - popular for many applications and services (civilian, military)

• Multiple UAVs are wirelessly interconnected in ad hoc manner, UAV networks (UAVNET)

• FANET acronym is also used for Flying Ad hoc Networks - able to forward packets, gather, 
and share information 

• UAVNETs – different characteristics and requirements different from traditional mobile ad 
hoc networks (MANET) and vehicular ad hoc networks (VANET)

• large variety of operational contexts

• dynamic behavior, rapid mobility and topology changes (physical and logical)

• cooperation needed: UAV-ground stations (GS), UAV-UAV, UAV- satellites, UAV swarms

• 3D Work-space/ environment (including space communications)

• Obstacle-avoiding paths

• Real-time problems during flight

• Multi-UAV (e.g. swarms)- specific  problems (group formation, path planning, task 
assignment)

• Energy consumption issues, ….

• specific methods and technologies for Data Plane and Management & Control Planes  
(M&C)  at different architectural layers

• Physical layer, MAC layer, routing, path planning, UAV tracking, traffic engineering, 
cooperation, security, etc. 

• Multi-UAV Path Planning–important topics in UAV area
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1. Introduction

1.1 Unmanned Aerial Vehicles (UAV) (drones) 

• UAVs- popular solutions for many applications (civilian domains, military domains)

•  Missions 

• surveillance, delivery, searching, transportation, agriculture, forestry, 
environmental protection

• mission critical operations - rescue/emergency, military actions, security

• UAVs are wirelessly interconnected in ad hoc manner → UAVNET

• UAV Communication in multi-layered networks – complex process

• Communication technologies used in UAVNETs  depend on  applications

• Examples:

• Outdoor - a simple line of sight 1-to-1 link with continuous signal transmission 

E.g.: surveillance–UAVs

• Satellite communication - preferable solution - for security, defense, or more 

extensive outreach operations

• Civil and personal applications - cellular communication technologies are 

preferred

• UAV swarms- utilize mixed communication technologies

• Limitations and challenges in UAV technology: battery capacity, limited flight 
autonomy, manufacturing costs, environment issues, security concerns and others

Slide 6



IARIA NetWare 2025  – October 26-30, 2025 Barcelona, Spain 

1. Introduction

1.2 Unmanned Aerial Vehicles (UAV) - classification 

• Different criteria depending on UAV missions and specific parameters 

• Missions and applications - civil and commercial UAVs: agriculture, aerial 
photography, logistics, data collection;  mission critical, special domain - military 
missions

• Performance-related characteristics: range, maximum altitude, aircraft weight, 
wingspan, payloads, speed, endurance, cost design and size 

• Engine type: fuel engines or electric motors

• Mechanical/physical characteristics: 

• weight - Micro, Light, Medium, Heavy, and Super Heavy classes

• range: ~5 kilograms to over 2 metric tons

• landing and takeoff capabilities 

• VTOL (Vertical Takeoff and Landing) – no external support to takeoff and 
landing 

• HTOL (Horizontal Takeoff and Landing)- need external support 

• longer flight ranges, can carry larger payloads, 

• Hybrid- combines the capability of both VTOL and HTOL types

• flight range: close, short, medium, and large endurance categories, spanning 
distances from under 10 to 1500 kms
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1. Introduction

1.3 UAV Networks

• Single UAVs systems- have been utilized for quite a long time in many apps.
• UAVs wireless connections: to ground base station (GS) or to a satellite station
• star topology

• Multi UAVs systems i.e., UAV networks including swarms of UAVs; no need to 
connect every UAV to GS

• Other terminologies
• UAV communication networks (UAVCN) , a.k.a.  flying ad hoc network (FANET)

• Relationships with MANET  (Mobile Ad hoc Network) and VANET (Vehicular Ad hoc 
Network):    FANET ⊆ VANET ⊆ MANET

• UAV networks – characteristics different w.r.t. MANETs and VANETs
• dynamic behavior - rapid mobility and dynamic topology (physical, logical) 
• new challenges for communication at:  PHY layer, MAC layer,  management and 

control, routing and path planning, traffic management, cooperation, security

• Different topics on Multi-UAV networks: Cooperative/swarm  Multi-UAVs; Opportunistic 
relaying networks; Delay-tolerant UAVs networks; Energy issues; Ground WSN; Internet 
of Things (IoT); Cooperation with Cloud Computing; Heterogeneity; Self-organization; 
Security; AI applied in UAV  
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1. Introduction

1.3 UAV Networks 

• Overview of a multi-UAV ecosystem
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1. Introduction

1.3 UAV Networks
• Basic Multi-UAV topologies- examples

• (a) Star topology: each UAV (node)  is directly connected with GS node
• (b) Mesh topology: a.k.a. Single-Group Swarm Ad hoc Network 

• The GS is only connected to a single node (this is the cluster head of the UAV 
group- playing a role of Gateway)

• The cluster head passes the data packets from the GS to the member nodes 
and vice-versa

• Intra-group communication topologies: star, ring, mesh

• (c) Cluster-based network topology; a.k.a. Multi-group Swarm Ad hoc Network
• The UAVs are grouped in several groups/clusters; each cluster has a head
• The GS is connected to the head UAVs of clusters
• The heads collect data packets from the member UAVs and  forward them to the 

GS  and vice versa

• (d) Hybrid mesh network- a.k.a Multi-layer Swarm Ad hoc Network
•  One cluster head UAV is connected to the GS
• The cluster head can pass the information 

• from the GS and vice-versa
• to the UAVs of its group 
• to other nearby cluster heads

• The GS can be connected also to some single UAVs or group cluster heads 
• Inter-UAV communication topology types: star, ring, mesh
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1. Introduction

1.3 UAV Networks
• Multi-UAV topologies: (a) Star b) Mesh (c) Cluster-based (d) Hybrid mesh
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2. Multi-UAV and Swarms

2.1 Multi-UAV systems

• Multi-UAV systems advantages vs. single UAV

• Time efficiency: The missions operational times can be significantly reduced 

• (e.g., target search, exploration, etc.)

• Cost:  it could be cheaper (e.g., concerning power consumption)

• Simultaneous-synchronized  actions: a team of UAVs can accomplish tasks in 
different geo-locations at the same time (e.g., to collect information from the points 
that cannot be reached by a single UAV)

• Complementarity: each team member can have a specific set of sensors

• All the sets would be complementary to each other

• Applicable when all the payload could not be physically located on a single UAV

• Fault tolerance:  the loss of a UAV unit could be mitigated by the algorithm managing 
the flight by assigning additional tasks to other UAVs

• Flexibility:  a group of UAVs could be dynamically allocated to different tasks at the 
same time and rearranged if necessary.

• Multi-UAV system issues

• Group piloting problems

• Regulatory restrictions

• Safety issues (e.g.,  collision avoidance)
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2. Multi-UAV and Swarms

2.1 Multi-UAV systems

• Multi-UAV systems taxonomy – multi-criteria - examples

• Collective organization: team (e.g. ≤10), squadron (≥1 teams), group (≥ 1 squadrons)

• System  autonomy: low/medium/high level

• Spatial UAV relations: Physical (links)/virtual/no coupling

• Temporal UAV relations: 

• simultaneous (all UAVs execute the same task simultaneously)

• asynchronous:  

• sequential (≤  1 in the air)

• stand in (1 in the air + one back-up) 

• call-in (≥1 in the air + they can call help from others)

• UAV similarity: identical, similar, heterogeneous

• Task separation: functional, cross-functional

• Mission Control: centralized, decentralized, mixed

• User interaction: real-time, pre-planning, no interaction

• Automatic plan: full, fixed, none
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2. Multi-UAV and Swarms

2.1 Multi-UAV systems

• Typical applications based on of multi-UAV collaboration- examples

• Disaster rescue - UAVs collaborate (search, delivery, positioning

• algorithms - adaptive GA and PSO for task assignment and PP ​

• Area coverage -dynamically adjusting paths and optimizing mission execution, 
addressing battery shortages and reducing working time ​

• Monitoring patrols- enable r.t. surveillance over large areas, employing algorithms 
for obstacle avoidance and maintaining safe paths

2.2 Special case: UAV swarms 

UAV swarm : a set of aerial UAV/robots working together for a specific goal

• UAV swarm domain belongs to aerial robotics area, leveraging collaborative autonomy 
between them to enhance operational capabilities

• Applications 

• Civilian sectors (entertainment, infrastructure inspection, and delivery services etc.)

• Military domain:   surveillance, combat support/actions and logistics

• Topics of interest (research and implementation): applications, routing, coordinated 
PP, task assignment, formation control, communication, scalability, energy, resource 
limitations and allocation, security and privacy, AI/ML in UAV swarms
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2. Multi-UAV and Swarms

2.2 UAV swarms 

• General Swarm Robotics (SR) – includes (UAV) swarms

• SR:  groups of robots- they collaborate with each other and with their environment to 
execute complex tasks efficiently

• Multi-Robot Systems (MRS)

• group of autonomous and relatively simple robots with similar capabilities

• equipped with local sensing and communication abilities, interacting locally with each 
other and with environment

• autonomous aerial agents cooperate for PP, task allocation, and formation control

• decentralized and self-organized behavior enhance efficiency, reliability, and 
adaptability

• Swarm Intelligence (SI) algorithms

• inspired by natural behavior, they facilitate collaborative decision-making and 
coordination in dynamic environments

• UAV swarm infrastructure

• Each UAV is an individual unit within the swarm, equipped with sensors, processors, 
and communication HW

• A control unit plays a central role in managing the swarm 
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2. Multi-UAV and Swarms

2.2 UAV swarms

• Basic components of UAV swarms

• Drones/Quadrotors -individual units with 
sensors, processors and communication HW

• Control Unit 

• central entity for control, monitoring, and data 
reception, (e.g., ground station (GS) or a cloud-
based system)

• it manages the swarm, ensuring operation within 
desired parameters 

• Communication System - wireless network for 
r.t. info exchange, (Wi-Fi, Bluetooth, Zigbee)

• Integrated sensors (e.g., cameras, LiDAR, 

"laser imaging, detection, and ranging”), 
GPS, accelerometers, gyroscopes) for 
environment data gathering and processing

• SW Algorithms for: PP, collision avoidance, 
formation control, and decision making

• Power Source - batteries or tethered power 
supplies critical for flight time and performance

• Navigation System: GPS, inertial navigation, 
visual odometry for autonomous navigation and 
collision avoidance.
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2. Multi-UAV and Swarms

2.2 UAV swarms 

• Features and characteristics of UAV swarms

• Cost-effectiveness, Scalability, Robustness, Survivability, Redundancy and  Fault-
tolerance, Adaptability & Flexibility Autonomy, Parallelism, Multi-tasking capability, 
Distributed coordination and tasks, High speed of mission, Radar cross-section

• Key topics in UAV swarms

• Task Allocation, Path Planning,  Resource Allocation, Formation Control, Sensor 
Placement, Network Optimization – are necessary  for communication and data 
exchange between multiple UAVs, to minimize latency and maximize efficiency, 

2.3 UAV swarm communication architectures and topologies (see also Section 1.3)

• UAV-UAV or UAVs - Control center

• U-U: direct link or multi-hop communication between UAVs, to exchange info from 
sensors or radar

• U-I (Infrastructure): UAVs direct communication with the fixed central control center 
(e.g.,GS), to get r.t. mission or control  information and return collected data

• Approaches: centralized and decentralized architectures

• Centralized architecture 

• 1-to-1 direct comm.: UAV - controller (e.g. GS); star topology (case a.– slide 11)

• (+) simple routing, useful for small systems

• (-) long delays might appear, (-) GS – single point of failure.
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2. Multi-UAV and Swarms

2.3 UAV swarm communication architectures and topologies

• Decentralized architectures

• Single-Group Swarm Ad hoc Network (see case b.– slide 11)

• A single point - gateway UAV (GW-UAV) communicates to infrastructure; upload 
and download of swarm information

• U-U communications are also active between the swarm members

• GW-UAV has two transceivers: for GW-U and for GW-I communication

• (+) non-GW UAVs only need to carry low-cost/ lightweight short-reach transceivers

• Example application: UAV cloudlet layer in Disaster Resilient three-layered 
architecture for Public Safety Long-Term Evolution

• Intra-swarm communication possible topologies: 

• Ring- bidirectional loop 

• (+)  any UAV could play the GW role; redundancy (two paths between two 
UAVs); (-) low scalability

• Star (the GW is placed in the swarm middle)

• (+) good r.t. response (low delay); (-) GW- single point of failure 

• Mesh (combination star + ring); frequently used topology

• all UAV nodes the same capabilities; (+) any UAV node can be a GW  
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2. Multi-UAV and Swarms

2.3 UAV swarm communication architectures and topologies

• Multi-Group Swarm Ad hoc Network

• (see case c) in Introduction – slide 11)

• This is a centralized architecture w.r.t. groups

• Inter-group  i.e., Group-to-Group (G-G) communications – via the infrastructure 

• GW-UAVs of each group is responsible for communicating with the infrastructure

• (+) different types of groups/clusters may perform different tasks for different 
applications 

• (-) G-G communication might expose high latencies (the path is G-I-G)

• Example app. Multi - theater joint operation (military domain)

• Multi-Layer  Swarm Ad hoc Network
• (see case d) in Introduction – slide 11)

• First layer:   a group of adjacent UAVs of the same type 
• Intra-group communications: ring, star, mesh
• Communication between any two UAVs does not require infrastructure relay

• Second layer: different types of UAV groups; rely on GW-UAVs to perform G-G 
communication

• Third layer:   the closest GW-UAV communicates with the infrastructure
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2. Multi-UAV and Swarms

2.3 UAV swarm communication architectures and topologies

• Multi-Layer  Swarm Ad hoc Network (cont’d)

• This architecture is appropriate for scenarios with complex missions 

• high number of UAVs executing the mission is required

•  network topology frequently changes, and communication between the UAV nodes is 
frequent
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2. Multi-UAV and Swarms

2.3 UAV swarm communication architectures and topologies

• Conclusions  on swarm communication architecture

• Centralized architecture - suitable for UAV small swarms and simple tasks 
•  Each individual UAV requires a long-range communication link U-I. 

• Decentralized architecture - communication coverage is through a multi-hop network
• The GW-UAV performs U-I communication

• Single-group swarm Ad hoc network  - appropriate for a swarm having the 
same type UAVs

• Multi-group swarm Ad hoc network- accept different UAV types; however, G-
G communication can experience high delays

• Multi-layer swarm Ad hoc network - relatively reliable because it overcomes 
Single Point of Failure (SPOF)

• UAV swarms have requirements of high coverage and maintaining connectivity
• high coverage: to be able to  gather intelligence and analyze situations
• connectivity – assures r.t. communication of the swarm 

• In unknown environments, threats /obstacles could appear  randomly in time and space
• UAV members should be able to withdraw or rejoin; the connectivity may have 

disruptions
•  To achieve an uninterrupted connectivity the distance in the UAV swarm should not 
•  exceed the sensitivity of the receiver
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2. Multi-UAV and Swarms

2.3 UAV swarm communication architectures and topologies

• Conclusions  on swarm communication architecture (cont’d)

• UAVs swarm should be able to react cognitively to changes of the environment to 
• adapt their movement to positions with channel characteristics 
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2. Multi-UAV and Swarms

2.4 Tasks assignment in UAV swarms

• Multi-UAV task planning and coordination involves 
• Tasks allocation among UAVs and synchronizing their actions 
• Activities

• creating action sequences for each UAV, resource allocation 
• mechanisms to prevent collisions 
• resolve conflicts during task execution

• Algorithms proposed 
• Combinatorial optimizations  

• have as objective a  function representing the system’s overarching goal
• applied  in task allocation, scheduling, and vehicle routing
• it assigns usually 1-to-1 task vs. agent, while minimizing the total assignment cost 
• the number of agents vs. tasks count: -equal (N = M - balanced;  N<> M - 

unbalanced allocation
• Auction-based: UAVs bid on tasks, based on their capabilities and associated costs
• Algorithm types: Market-based or swarm-based algorithms
• Linear Assignment Problem (LAP) -  the total assignment cost equals the summation 

of individual agent costs
• Task assignment and interchangeability focus on task allocation and adaptability

• Task interchangeability - allocate tasks based on individual UAV  capabilities   
• Application examples  

• warehouse automation and search and rescue (SAR) missions
• precision farming, monitoring multiple rows of crops for health, soil condition, and 

yield data 
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2. Multi-UAV and Swarms

2.5 Formation control in UAV swarms

• Coordinating multiple UAVS to maintain specific formations 
• common goal; cohesive motion and control of the team is necessary

• Challenge: to coordinate large groups of relatively simple UAVs to perform complex tasks 

• Robust and scalable control algorithms are needed to handle real-world uncertainties 
and disturbances and to manage communication among swarm UAVs

• The formation control coordinates UAV swarms to meet specific state constraints
• the planning is collective not individual 
• a prescribed formation is maintained
• a single action drives the entire formation (reducing computational complexity)

•  Formation control strategies

• Virtual-Structure-based - use a virtual structure to guide the formation of UAVs

• Effective for maintaining rigid formations in applications like surveillance and 
mapping 

• Leader-Follower-based - One or more UAVs act as leaders, and the rest follow

•  Useful when specific paths need to be followed, such as SAR operations 

• Behavior-based - Each UAV follows simple behavior rules that result in the desired 
formation

•  Applicable in dynamic environments and tasks like reconnaissance and data 
gathering.
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2. Multi-UAV and Swarms

2.5 Formation control in UAV swarms

• Example
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2. Multi-UAV and Swarms

2.6 UAV Swarm Intelligence (SI)

• One can make decisions collectively and complete the mission using relatively 
simple instructions (AI and edge computing can contribute)

•  Applications: civilian, military purposes 

• Swarm intelligence (SI)

• SI is an evolving area of bio-inspired AI; deep interconnection of the real system 
having feedback loops 

• SI - scheduling, clustering, optimizing, and routing a cluster of similar individuals

• Individuals follow rules and interact with each-other and with the environment

• SI basic principles: 

• Proximity: the swarm individuals can respond to the environmental variance

• Quality: a swarm can respond to quality factors like location safety only

• Diverse response: enables to design of the distribution s.t. all the individuals are 
protected from environmental fluctuations to a maximum level

• Stability: swarm stable behavior w.r.t.  changes in the environment

• Adaptability: to environment changes

• SI mechanisms should deal with:  environment, interactions, and activities of the 
individual UAVs
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2. Multi-UAV and Swarms

2.6 UAV Swarm Intelligence

• Example of SI architectural decomposition -  five layers: decision making, path 
planning, control, communication and application layer
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2. Multi-UAV and Swarms

2.6 UAV Swarm Intelligence

• SI architectural decomposition – short description of layers

• Decision-Making Layer

• Responsible for mission planning; task assignment and evaluation in UAV clusters

• Key areas: swarm architecture, effectiveness assessment, scheduling and intelligent 

decision-making;  ​Several architectures proposed

• Effectiveness models utilize system dynamics to evaluate UAV performance based on 

survival rates and mission completion ​

• Scheduling for complex task planning (e.g., using heuristic algorithms for efficient 

resource allocation)

• Path Planning (PP) Layer
• It transforms decision data into actionable flight paths for UAVs
• Determines feasible paths between start and endpoints (NP-hard problems!)

• Algorithms: classic (e.g., A*) and meta-heuristic (e.g., Particle Swarm 
Optimization (PSO), Gray Wolf Optimization algorithm (GWO) )

• Important topics for PP: 3D-issues, dynamicity, optimality, area coverage PP​
•  PP in 3D environment is complex

• methods like GWO and PRM are utilized for obstacle avoidance​
• dynamic PP: real-time obstacle avoidance and sudden threats (techniques like 

cubic spline and Kalman filters can be employed) 
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2. Multi-UAV and Swarms

2.6 UAV Swarm Intelligence

• SI architectural decomposition – short description of layers (cont’d)

• Control Layer

• It coordinates tasks among UAVs based on path information and environmental data

• Manages: formation control, task coordination and automatic obstacle avoidance 
Design: system control platforms, controller design, and collaborative search 
technologies

• Enhance flight efficiency and ensures safety during operations

• Running protocols for maintaining group cohesion and flexibility in dynamic 
environments

• Communication Layer (for UAV Coordination)

• It supports information sharing UAV-UAV and UAVs - GS

• Related topics: architecture, net technologies and secure communication methods ​

• Aims to  robust communication to support r.t. data sharing and coordination

• Applications of UAV Swarm Intelligence- examples

• Intelligent transportation, ​Environmental monitoring,  Agriculture , Emergency 
response, Military domain applications
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3. Path Planning in Multi-UAV Networks

3.1 Path planning (PP) problem 

• PP is related to the UAV routing and dependent on geographical/environment  
information

• UAV PP (a.k.a. motion planning), is a branch of path-finding used in robotics

• UAV specific differences: 3D space, fixed-wing UAV (cannot hover), UAV swarms 

• UAV PP main objectives 

• Single PP: to find the best (i.e., optimum) collision-free path, start -> destination 
Constraints: temporal, physical, and geometric

• Coverage PP (CPP) – UAV applications for specific region exploration

• PP Characteristics

• A path is represented as a continuous function with boundary conditions ​

• A cost function includes path length, energy consumption, and collision risk ​

• Key objectives: minimizing path length, energy consumption, collision-free navigation

• Constraints arise from environment factors, physical limitations, task requirements, 
and energy reservations

• PP problems of interest: environment modeling methods, path structures, optimality 
and completeness criteria, path finding methods, UAV simulators
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3. Path Planning in Multi-UAV Networks

3.1 Path planning (PP) problem 

• Classes of UAV PP problems (from applications point of view)

• Informative PP (IPP): to maximize the amount and utility of data collection

• Coverage PP (CPP): to find a path that passes through all points of an area or 
volume of interest, while avoiding obstacles

• CPP algorithms can be divided (according to the employed cellular environment 
decomposition model), into main types: no decomposition, exact cellular 
decomposition and approximate cellular decomposition 

• Cooperative PP (specific to UAV swarms) to generate a coordinated mission through 
utilization of PP algorithms 

• Criteria to be considered when searching a path: minimum values for:  path length, 
flight time, fuel consumption, and danger exposure

• Depending whether the environment is known or not, PP algorithms can be: 
• Offline PP 

▪ Assumption: all environmental information is known in advance
▪ PP algorithms only depend on static environmental information

•  Online PP 
▪ The environment information is only partially known in advance 

▪ paths must be adjusted in real-time, based on sensor information
▪ more complex problem
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3. Path Planning in Multi-UAV Networks

3.2 Path planning model

• Consider a 3D workspace 

•  Let it be w; it  may have obstacles; let woi be the ith obstacle 

• The free workspace (i.e., without obstacles) is the overall area represented by 

• wfree = w \Ui woi 

• The initial point x init and the goal region x goal are elements in w free 

• The PP problem is defined by a triplet (x init , x goal , w free) 

• Definition 1-PP: Given a function δ:[0,T ]-> R3 of bounded variation, where δ (0)=  xinit 

and δ (T)= xgoal, 

• if there exists a process Φ which can guarantee δ (t) ϵ w free , for all  t ϵ [0,T] , then Φ 
is called Path Planning

• Definition 2-Optimal PP 

• Let Σ denote the set of all paths

• Given a PP problem ( -, -, -) and a cost function c :Σ -> R ≥ 0,  if a process fulfils the  
Definition 1 and if  exists a feasible path having the minimum of cost, then the 
associated process Φ’ is named Optimal PP
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3. Path Planning in Multi-UAV Networks

3.2 Path planning model

• Path Planning and Trajectory Planning: two distinct problems in robotics, but related 

• Trajectory: a path is parameterized by time t

• Trajectory planning 

• Usually, one considers the solution from a robot PP algorithm and determines how 
to move along the path in wfree

• the path is either a continuous curve or discrete line segments that connects the 
start node xinit to the end node xgoal 

• one needs to find smooth and continuous trajectory segments to move along the 
path

• it can be described mathematically as a twice-differentiable polynomial

• i.e., the velocities and accelerations can be computed by taking the first and 
second derivatives with respect to time 

• The PP problem has a non-linear nature and frequently an exponential complexity 
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Problem (summary)

• Knowledge needed to a path planner  

• about the environment and dynamics of the objects encountered in UAV operation 
space

• Issues on 3D obstacles representation 

• Obstacles: static or dynamic; any geometry: cubes, pyramids,  floating balls, etc.

• The obstacles model will affect the path search algorithms 

• The model should include the medium specifics (urban, rural, forests, special 
zones, radar areas)

• Challenges: how to get enough accurate geometric coordinates of the obstacles

• The environment type (containing bridges, buildings (convex, and/or concave), 
complex and cluttered spaces will determine the selection of representation 
methods

• Environment complexity-related attributes

• Static-known (SK): All obstacles /objects are both static and known

• Dynamic-known (DK): Mobile obstacles /objects, their movement is known 

• Static-unknown (SU): Static obstacles /objects; their relative positions are unknown 

• Dynamic-unknown (DU): All obstacles /objects are both mobile and unknown
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Problem

• 3D Environment representation- classes 

• Cell decomposition; Roadmap; Potential field 

• Cellular decomposition (CD)

• Roadmap (RM): the problem space is a roadmap representation of the environment

• Potential field (PF): represents the problem space environment as a continuous APF

Slide 37

Source: M,R. Jones, S. Djhael, K. Welsh, Path-planning for Unmanned Aerial Vehicles with Environment 

Complexity Considerations: A Survey, ACM Comput. Survey, Vol. 1, No. 1, November 2022.



IARIA NetWare 2025  – October 26-30, 2025 Barcelona, Spain 

3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Problem

Slide 38
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods (See details in Backup slides)

• Cell decomposition

• The environment space is divided into a series of nonoverlapping cells 

• Approximate Cell Decomposition 

• It overlays a regular grid structure upon the environment space

• Decomposition into a set of structured cells

• Exact  Cell Decomposition 

• The space is divided into several non-overlapping polygon regions  

• Trapezoidal: the space is split in distinct convex cell regions 

• Boustrophedon: It  minimizes the coverage path length in comparison to the 
trapezoidal, through reducing the number of polygon cell regions created

• Adaptive Cell Decomposition (applicable to 2D and 3D space)

• It deconstructs the environment only where an obstacle’s presence requires

• For a PP scenario an adaptive schema called (Quadtree) is constructed by 
dividing the space into four equal sub-regions

• Roadmap Representation

• Connectivity graph - the  nodes represent key free space locations 

• The graph construction strategies can be different

• The edges weights are related to time or distance

• The  graph is similar to that one in classical route planning
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods

• Roadmap Representation - examples(cont’d)

• Visibility graphs (VG)

• Voronoi diagrams and path solutions

• Probabilistic Roadmap (PM)

• Rapidly-exploring Random Trees (RRTs)

• Artificial Potential Field (APF)

• The cell decomposition and roadmap approaches build an environment 

representation from prior knowledge on  environment 

• (APF) computes in real-time a directional force to be applied to a UAV, based on 

• the gravitational attractive forces applied by goal or target locations

• the cumulative repulsive forces applied by obstacles
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

• Evaluation Metrics for PP  Algorithms

• Path length measures the total distance traveled, influenced by obstacle distribution 
and environmental complexity 

• Computation time is critical for r.t. tasks
• Energy consumption relates to battery usage; important for long-duration missions
• Path safety assesses collision avoidance capabilities, while path smoothness 

ensures efficient UAV motion 
• Robustness evaluates adaptability to environmental changes and uncertainties

• Path Planning process actions (aiming to safe, efficient, and effective navigation)

• Note : some of these actions are executed in parallel

• 1. Environment Modeling: mapping physical features and identifying obstacles, using 
imagery (e.g., from satellites) or real-time sensory data

• 2. Setting Objectives and Constraints: define objectives – e.g., minimizing travel 
time or distance; identify constraints, e.g., maximum altitude and no-fly zones

• 3. Defining Start and End Points: - including any intermediate waypoints or targets

• 4. Path Generation: use algorithms -  A*, Dijkstra, RRT, PSO, ACO, ML-based etc. , to 
generate possible paths (based on objectives and constraints)
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

• Path Planning process actions (cont’d)

• 5. Obstacle Detection and Avoidance: employ sensors for  r.t.  obstacle detection 
and dynamically adjust the flight path to avoid obstacles

• 6. Path Optimization: Select the optimal path from generated options, balancing 
factors like safety, efficiency, and compliance

• 7. Collision Risk Assessment: assess the path for potential collision risks (here, 
communication with air traffic control could be needed)

• 8. Final Path Selection and Execution: select and execute the path, adjusting the 
UAV's position, altitude, and speed as necessary

• 9. Monitoring and Re-planning: continuously monitor the path and re-plan if 
unexpected changes occur in the environment or UAV performance

• 10. Arrival and Post-Flight Analysis: Upon arrival, complete the mission and   
perform a post-flight analysis to assess and learn from the PP efficiency and any 
deviations
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

• Classification of UAV PP methods

• Criteria: algorithmic principles, environmental conditions, task requirements 

• Algorithmic principles: examples 

• deterministic algorithms (e.g., Dijkstra, A*) 

• random sampling algorithms (e.g., RRT, PRM) 

• biologically inspired algorithms 

• hybrid algorithms

• Environmental - related conditions 

• static PP

•  dynamic PP

• 3D path planning ​

• Task requirements 

• single-UAV 

• multi-UAV collaborative PP ( focus on coordination and task allocation)
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Review of Methods, Challenges, and Future Directions, MDPI, 2025, https://doi.org/10.3390/drones9050376
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
• Classification of UAV PP methods-  criteria: algorithms, environment, tasks

Slide 44
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of UAV PP methods – criteria: algorithm types

•  sampling-based, heuristic, math models, bio-inspired, machine learning-based

Slide 45
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3. Path Planning in Multi-UAV Networks

Swarm intelligence (SI)- based  PP 
techniques-  examples

• In SI systems, a group of UAVs interact with 
each other and its environment to solve 
problems collectively or accomplish tasks

• ABC Artificial Bee Colony

• ACO Ant Colony Optimization

• BA  Bat Algorithm 

• CSA Cuckoo Search Algorithm

• FA Firefly Algorithm

• GWO Grey Wolf Optimization

• PSA-ACO Parallel Self-Adaptive ACO

• PSO Particle Swarm Optimization

Slide 46

Other SI-based algorithms

• FOA Firefly Algorithm 

• TS Tabu Search 

• EHO Elephant Herding Optimization 

• FPA Flower Pollination Algorithm

• IPA Immune Plasma Algorithm 

• GEO Golden Eagle Optimizer

• AEO Artificial Ecosystem Optimizer

• RLGWO  Reinforcement learning based GWO

• AGWO Adaptive GWO algorithm

3.4 Swarm Path Planning Methods

Notations (partial list)

Classic algorithms

• RMA Road map algorithm 

•   A* and APF  Artificial Potential Field

The UAV swarm PP is a NP-hard problem

Categories: classic and meta-heuristic algorithms 

Classic algorithms require environmental information: 

e.g., A*, RMA, APF  

Meta-heuristic algorithms require information on the r.t. 

position and measured environmental elements: e.g.,  

PSO, PIO, FOA, GWO 

Source: M.M. Iqbal, Z.Anwar Ali, R. Khan and M.Shafiq, Motion Planning of UAV Swarm: Recent Challenges and 

Approaches,  IntechOpe, 2022, DOI: http://dx.doi.org/10.5772/intechopen.106270
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of UAV PP methods –criteria: algorithm types

•  sampling-based, heuristic, math models, bio-inspired, machine learning-based

• Sampling-Based Techniques (SBTs)

• SBTs use random sampling to solve optimization problems or to estimate specific 
quantities. They can search the best path in complex and dynamic environments

• Most Sampling techniques used inspection and 3D reconstruction applications 

• Examples: Rapidly-exploring Random Trees (RRT), RRT*, Probabilistic Roadmap 
(PRM), Voronoi Diagram(VD), Artificial Potential Field (APF)

• (+) SBTs PP is useful when it is difficult or impractical to use deterministic algorithms

• (+) RRT, PRM, VD, and PF are widely used; they excel in dynamic, uncertain envs. 

• (-) less efficient and inaccurate than deterministic methods for specific problems

• (-) sensitive to initial conditions, risk local minima, and are resource-intensive

• Heuristic Path Planning

• They leverage heuristics to effectively guide searches through complex spaces

• Widely used in various fields: robotics, gaming, transportation and logistics

• Examples: Dijkstra, Greedy Best First Search, Hill Climbing, A* and  Variants, 
Theta*, D*

• (-) possible problems with high-dimensional spaces and dynamic obstacles, requiring 
enhancements for adaptability and computational efficiency in large, complex domains
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of UAV PP methods –criteria: algorithm types

•  sampling-based, heuristic, math models, bio-inspired, machine learning-based

• Mathematical Models

• They employ math. functions (e.g., Dubin, Bézier curves, Lyapunov function), utilized to 
solve the geometry and UAV motion model- based trajectory-generating process 

• The models  may be based on optimization, control/graph theory, or other maths.

• they can represent the constraints, objectives and UAV dynamics; account for other 
aspects (cost, time, and energy)

• (-) can be computationally intensive and often require prior environmental knowledge

• (-) problems in integrating dynamic obstacles, complex terrains, and constraints like 
energy consumption

• Linear Programming (LP)

• solves optimization problems in which linear equations or inequalities represent the 
objective and constraints; LP minimizes or maximizes a linear function when applied 
to certain conditions 

• Basic LP

• generate the best solution to a wide range of problems, including issues in path 
planning Binary linear programming (BLP), mixed integer linear 
programming (MILP) and non-linear programming (NLP)

• LP PP can identify optimal paths, while minimizing distance, time, or energy 
consumption 
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of UAV PP methods –criteria: algorithm types

• Mathematical Models (cont’d)

• Linear Programming (cont’d)

• Mixed Integer Linear Programming (MLP)

• MILP - dynamic and robust tool for large, complicated problems with both 
continuous and discrete variables 

• Examples

• discrete rescue PP model in a dynamic environment

• path optimization for multi-UAVs with collision avoidance and maximization of 
the fleet utilization in 3D environment 

• scalable and robust trajectory generation scheme for multi-target PP

• Non-Linear Programming (NLP)

• NLP optimizes an objective function (relationships between variables are non-linear)

• NLP can handle complex problems; suitable for real-world scenarios with dynamic 
environments and non-linear constraints

• Examples 

• optimization trajectory framework by decoupling state variables from temporal 
factors, dividing a complex NLP problem into two simpler NLP subproblems

• control system for tracking highly mobile targets 

Slide 49



IARIA NetWare 2025  – October 26-30, 2025 Barcelona, Spain 

3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of UAV PP methods –criteria: algorithm types

• Mathematical Models (cont’d)

• Non-Linear Programming (NLP) (cont’d)

• Examples 

• optimizing the UAV trajectory, energy efficiency, and data collecting interval for 
each ground sensor nodes 

• double-loop iterative algorithm utilizing the UAV mobility pattern and developing 
an energy-efficient trajectory generation scheme in a dynamic environment

• Control Theory- based methods

• They design and analyze control systems, including feedback control, optimal control 
and adaptive control 

• In PP they  design control laws that manipulate the inputs to the UAV (thrust, attitude, 
etc.), to achieve a desired objective (stability, accuracy, efficiency, or performance)

• Examples: Model Predictive Control (MPC), Bézier curves, Dubin algorithm, 
Lyapunov function, Markov decision model and others

• (+)LP/variants, Bézier curves, and Dubin trajectories, offer precision and efficiency

• (+)Lyapunov-based methods ensure path stability

•  (+) Markov models and MPC address environmental uncertainties robustly

• Bézier curves, Dubin trajectories and MPCs are suitable for military apps and r.t. 
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of UAV PP methods –criteria: algorithm types

• Mathematical Models (cont’d)

• Control Theory- based methods (cont’d)

• Bézier Curve

• BC approximates a real-world shape that otherwise has no mathematical 
representation or whose representation is unknown or too complicated

• In PP the B curves are used to define the shape and curvature of the path, taking 
into account the constraints and objectives of the problem

• Examples: Multi-step process for creating smooth, practical paths for UAVs in 
the 3D environment, Combined GA and Bézier curve; GA generates the path, 
and the Bézier curve makes the obtained path smoother for multi-UAV systems

• Dubin Trajectory

• [Note: In geometry the Dubin path is the shortest curve that connects two points in the 2D 
Euclidean plane with a constraint on the path curvature and with prescribed initial and 
terminal tangents to the path, and an assumption that the vehicle moves unidirectionally]

• The Dubin trajectory in UAV PP supports navigating between points in a plane 
with a minimal turning radius, offering precise and smooth flight paths 

• Examples: 

• R.t. trajectory planning scheme for flight line tracking utilizing Dubin's path 
generation to account for the dynamic restrictions of UAV

• Dubin path combined with path-oriented RRT*, to meet UAV dynamic 
constraints
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of UAV PP methods –criteria: algorithm types

• Mathematical Models (cont’d)

• Control Theory- based methods (cont’d)

• Model Predictive Control (MPC)

• It offers r.t adaptability and precision by forecasting and optimizing future trajectories 
based on current and anticipated environmental conditions and constraints 

• Examples

• Used where the system's dynamics are highly nonlinear or uncertain or where 
there are significant time delays or constraints on the control inputs 

• (+) Low computational cost for high-dimensional systems with nonlinear 
dynamics 

• Cooperative minimum time PP scheme for multi-UAVs using nonlinear dynamics 

• It considers the synchronicity formation of the network 

• It could be used for systems with many UAVs

• (-) it doesn't consider obstacles

• Combined MPC and Improved Grey Wolf Optimizer (IGWO) to generate 
optimal trajectories in a highly dense environment 

• Learning Based MPC (LBMPC) for trajectory planning for multi-UAV cooperating 
to execute a required mission 

• (-) group formation control of multi-UAVs - is computationally expensive
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3.4 Path Planning Methods
Classification of UAV PP methods – criteria: algorithm types

• Mathematical Models (cont’d)

• Control Theory- based methods (cont’d)

• Markov Decision Process (MDP) represents the system behavior over time 

• widely used for PP using Deep Reinforcement Learning (DRL) 

• (-) complexity for PP in dense and uncertain environments 

• Examples

• Partially observable MDP scheme for UAV PP in a dynamic environment. 

• Fast MDP(FMDP) - can solve a specific subclass of MDPs quickly and 
illustrates how to keep a safe distance in real-time and avoid collisions  

• Lyapunov Vector Field Guidance (LVFG)- framework for assessing system 
stability and convergence 

• UAV PP involves defining objectives and constraints and modeling the UAV and 
environment, which measures path stability and convergence 

• Examples

• LVFG used for 3D UAV PP

• bifurcation theory-based PP for UAVs targeting dynamic ground objectives

• feedback control to get the UAVs closer together, a variable airspeed 
controller to keep the UAVs at different angles

• graph theory to follow moving targets
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

Classification of UAV PP methods – criteria: algorithm types

• Bio-inspired algorithms

• They typically deconstruct an environment into a searchable problem space using 
exclusively approximate cell decomposition approaches

• Examples: Ant Colony Optimization (ACO); Particle Swarm Optimization (PSO) etc. 

• Ant Colony Optimization (ACO) 

• SI–based algorithm inspired by the collective behavior of ants

• The standard algorithm is inherently parallel and straightforward to execute

• The walking path of ants is used to express the feasible solution

• Each ant is intended to search for the shortest path in the free space

• Over time: continuous increase in the concentration of pheromones along 
shorter paths → a corresponding rise in the preference of ants for those paths

• This reinforcement mechanism eventually converges, guiding the entire ant 
colony toward the identification of the optimal path
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3.4 Path Planning Methods

Classification of UAV PP methods – criteria: algorithm types

• Bio-inspired algorithms (cont’d)

• Ant Colony optimization (ACO) (cont’d)

• ACO Problems: 

• (-) local optima and slow convergence in complex scenarios; it is sensitive to 
objective function choices and parameters; it can be computationally 
demanding in complex problems

• Examples   

• low-altitude PP and adjusting pheromones adaptively

• multi-UAV PP, incorporating threat modelling and coordination functions

• optimal for border surveillance, considering sensing, energy, and risk factors 

• ACO Extensions 

• optimal solutions for large domains; multi-UAV operations and multi-depot PP

• dynamic green ACO algorithm for energy efficient PP

• joint PP approach for UAV-assisted IoT systems

• optimal PP across multiple heterogeneous UAVs

• parallel Self-Adaptive ACO for coverage PP, improving speed and performance

• enhanced dynamic obstacle avoidance with an elite-ACO scheme, focusing on path selection 
and pheromone updating 
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

Classification of UAV PP methods – criteria: algorithm types

• Bio-inspired algorithms (cont’d)

• Particle Swarm optimization (PSO)

• PSO simulates the social behavior of a swarm of birds or a school of fishes 

• Optimization - by utilizing the shared information of the global and local solutions in 
the swarm

• PSO- widely used for finding optimal solutions in UAV PP

• PSO excels in PP due to its effective search process

• PSO Actions summary

• Simple agents, called particles, move in the search space

• The position of a particle shows a candidate solution/path

• Each particle velocity: subject of systematic adjustments in adherence to 
defined rules, aimed at refining their positions within the search space

• Concurrently, the collective intelligence of the best solution is captured and 
communicated to fellow particles in subsequent iterations

• When the stopping conditions are reached the algorithm stops and the best 
solution is recorded as a safe and feasible path
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

Classification of UAV PP methods – criteria: algorithm types

• Bio-inspired algorithms (cont’d 

• Particle Swarm optimization (PSO) (cont’d)

• PSO Problems

• (-) speed and global convergence limitations

• (-)traditional PSO variants often face early convergence and limited search scope

• PSO Algorithms Extensions

• maximum density convergence DPSO (MDC-DPSO)

• fast cross-over DPSO algorithm (FCO-DPSO)

• accurate coverage exploration DPSO algorithm (ACE-DPSO)

• PSO-based scheme to improve convergence and avoid local optima.

• hierarchical, multi-objective PSO algorithm focused on Pareto dominance 

• coordinated PP for UAVs, addressing flight time and obstacle avoidance, using 
a Spatial Refined Voting scheme for better convergence

• motion-encoded PSO for dynamic targets, encoding UAV motion in particle 
generation

• enhanced PSO by maintaining population diversity and introducing probabilistic 
mutation for better optimization. 

• spherical vector-based PSO for complex environments, correlating particle 
positions with movement vectors for optimal path finding
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

Classification of UAV PP methods – criteria: algorithm types

• Bio-inspired algorithms (cont’d) 

• Gray Wolf Optimization (GWO)

• Metaheuristic algorithm that mimics the hunting behavior of grey wolves to find 
optimal solutions for various problems. It uses hierarchical ranks of wolves: (α), (β), 
(δ), (ω) and their hunting process to guide the population of candidate solutions 
towards the best solution. 

• Core Concepts

• Social Hierarchy: (α) strongest- the best solution found so far; then -  (β), (δ), (ω)

• Hunting Mechanism steps: Searching, Encircling, Attacking.

• Mathematical Model: Math. equations used to update the positions of the 
wolves, simulating these hunting and hierarchy behaviors

• Working steps
• Initialization: a random population of candidate solutions is created
• Fitness Evaluation: the fitness of each wolf is calculated
• Best Wolves Identification: The wolves with the best fitness (α), (β), (δ) are 

identified
• Position Update: The other wolves (ω) update their positions based on the positions 

of the (α) (β), (δ) wolves, simulating the encircling and attacking phases
• New Generation: This process continues to create new generations of wolves until 

the optimal solution is found, or a stopping criterion is met
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

Classification of UAV PP methods – criteria: algorithm types

• Bio-inspired algorithms (cont’d) 

• Gray Wolf Optimization (GWO) (cont’d)

• (+) Simplicity and Flexibility

• (+) Competitive performance w.r.t other metaheuristics

• (-) Slow convergence and Poor exploration

• Improved GWO variants examples 

• Ensemble GWO (EGWO) 

• Representative-based grey wolf optimizer (R-GWO)

• Reinforcement learning - based GWO (RLGWO)

• Evolutionary Based Algorithms

• Differential Evaluation (DE)

• DE evolves a population of potential paths using objective functions, such as 
travel distance or time 

• Through inheritance, crossover, and mutation, it iteratively refines paths until 
an optimal solution is found, or a predetermined limit is reached, proving 
versatile in various UAV PP cases
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

Classification of UAV PP methods – criteria: algorithm types

• Bio-inspired algorithms (cont’d)

• Evolutionary Based

• Genetic Algorithm (GA)

• GA PP leverages principles of natural selection and genetics to iteratively 
evolve optimal UAV navigation routes through selection, crossover, and 
mutation 

• (-) Convergence speed performance is imprecise, resulting in an inefficient 
optimization process, especially for real-time scenarios

• Improvements: modified target function, population initialization, selection, and 
mutation phases

• Combined the advantages of DL and GA  in DL-GA algorithm
 

• AI/ML- based  Path Planning methods (short summary)

• Artificial intelligence methods – significant progress for  UAV PP

• efficient navigation in complex and dynamic environments 

• ML, RL, DL algorithms have been developed to optimize trajectories, enhance 
obstacle avoidance, and meet r.t. computational demands
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods

Classification of UAV PP methods – criteria: algorithm types

• AI/ML- based  Path Planning methods (cont’d)

• Machine learning (ML) algorithms are recently proposed in UAV PP area

• ML algorithm types : Supervised Learning, Unsupervised learning, Reinforcement 
Learning (RL), Deep Learning (DL), Deep Reinforcement Learning (DL), etc., learn 
from existing data to build and refine models to solve different tasks.

• ML applied in UAV PP area: clustering methods (QT and 𝐾-means), DL,  RL, DRL,  
cooperative and geometric learning, etc.  –used for UAV PP and collision avoidance

• ML-based applications in UAV -examples: 

• to deal with different perspectives of autonomous UAV flights including tuning the parameters for 
the controller

• adaptive control algorithms for autonomous flight

• recognizing objects in farming;  real-time path planning 

• real-time collision avoidance considering obstacles or other aerial vehicles 

• decisions within environment problem space, seeking to optimize a given cumulative reward (RL)
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of multi-UAV PP methods – another view: 

•  criteria : classical/hybrid, metaheuristic/hybrid, heuristic/hybrid, ML/hybrid
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of multi-UAV PP methods : 

• criteria : classical/hybrid, metaheuristic/hybrid, heuristic/hybrid, ML/hybrid
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Recall - Notes:

• Heuristic technique (problem solving, mental shortcut, rule of thumb) - any 

pragmatic  approach to problem solving that, not fully optimized, perfected, or 

rationalized,  but "good enough" as an approximation or attribute substitution.

• Metaheuristic - high-level, problem-independent algorithmic framework providing 

guidelines for developing heuristic optimization algorithms in complex problems, (e.g. 

when exact solutions are computationally infeasible). It can  find, generate, tune, or 

select a heuristic (partial search algorithm) that may provide enough good solution to 

an optimization problem.  Metaheuristics act as strategies for finding  optimal 

solutions by intelligently exploring vast solution spaces.

• Main Characteristics

• High-level: general strategies, not specific algorithms for a single problem  

• Problem- independent: the framework can be adapted to a wide range of 

optimization problems 

• Heuristic nature: no guarantee on finding the absolute optimal solution but aim 

for sufficiently good ones 

• Exploration of large solution spaces: effective at searching large sets of possible 

solutions 
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3. Path Planning in Multi-UAV Networks

3.4 Path Planning Methods
Classification of multi-UAV PP methods 

•  criteria: classical/hybrid, metaheuristic/hybrid, heuristic/hybrid, ML/hybrid

• Statistics on Multi-UAV Path Planning – methods published 2021-2025
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4. Challenges and Open Problems

• Summary of challenges in Multi-UAV Path Planning

• Key challenges: communication and collaboration, obstacle avoidance, safety 
and reliability, security, energy efficiency

• Consider dynamic 3D environments – to adapt adapting PP algorithms to changing 
conditions ​

• Reduce system complexity and computational costs - with environmental 
complexity and the number of UAVs ​

• R.t. path adjustments and efficient communication among UAVs to prevent collisions

• Integrate AI/ML algorithms and methods in Multi-UAV Path Planning

• Special scenarios path planning

Slide 66
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4. Challenges and Open Problems

• Summary of Open Research Problems 

• PP Algorithms

• To adapt classical algorithms for larger, dynamic environments in order to 
enhance their applicability 

• R.t.  algorithms need to be further developed for PP in complex 3D environments

• Metaheuristic approaches should focus on decentralization and r.t. optimization ​

• Hybrid algorithms need to be tested in real-world scenarios to ensure 
effectiveness

• Obstacle and collision avoidance

• Enhance heuristic approaches to improve scalability and collision avoidance 

• Communication and Collaboration

• Improving the communication protocols for seamless coordination among UAVs 

• Energy efficiency

• Extending operational range and duration by improving energy efficiency 

• Complexity and cost

• Reduce system complexity and computational costs while maintaining high-quality 
solutions. ​

• AI/ML  approach

• AI/ML integration while considering computational resource demands and 
adaptability ​
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4. Challenges and Open Problems

• Specific Topics 

• Path Planning in 3D environments and time domain

• Enhanced optimization methods are needed for real time in 3D space

• Consider kinematic, geometric, physical and temporal constraints, flight risk 
levels, airspace restrictions, etc.

• 3D UAV PP in complex environments (urban areas, caves, forests etc.)

• Mathematical models for the PP 

• Multi-objective functions, (Pareto…) to make the math UAV PP models more realistic

• Multiple types of static and dynamic constraints are necessary to be considered in PP 
models

• Experimental work

• More work is necessary with real experiments. Issue: number of UAVs considered

• Real time aspects to be considered

• Optimization techniques 

• Many optimization algorithms and methods have been already studied: 

• Sampling-based, Node -based, Mathematic Model- based, Bioinspired 
Multifusion-based, AI, etc.

• Combining different methods, such as AI-based ( NN, DEL RL, DRL..) evolutionary 
algorithms with heuristic, fuzzy inference methods
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4. Challenges and Open Problems

• Specific Topics 

• Integration of different segments

• The integration and communication of UAVs with terrestrial and space

• integrate different spaces connected to each other via communication 
protocols

• Different factors need to be considered: data rate, coverage. scalability, 
reliability, security

• Security and privacy

• Security and privacy should be considered at each architectural layer: application, 
transport, network and physical layer

• Privacy needs to be addressed more  in future work, given the UAV’s connectivity to 
ground and air space, large amounts of data need to be stored securely

• UAVs in smart cities

• Integration between UAVs and other means of transport (trucks, buses, etc.)

• Policies to encourage the use of UAVs are developed, promoting the economy of the 
sector, together with the development of new technologies such as

• DAA (Detect and Avoid) 

• UTM (UAS Traffic  Management), etc.

• Airspace regulations to govern the  development and operation of  real UAV  
applications in different environments
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4. Challenges and Open Problems

• Specific Topics 

• 3D Environment complexity issues

• Solutions

o Split the problem into more manageable chunks, e.g. fixing of a UAV 3D altitude; 
PP becomes a 2D problem

o Find some means for offloading some computational task from UAVs 

• The  binary choice between a known/ unknown environment is a notable limitation 

• To define bounds for how much complete and accurate pre-existing environmental 
knowledge must be

• Further research - to select the best method in static/dynamic or a 
known/unknown  vs environment

• Potential solutions

- Exploration of the hybrid environment planning 

o pre-planning a path with a static representation of the environment

o dynamic unknown obstacles to be evaluated during the flight, with minor 
changes supplied to a global path

- Individual ability of a UAV to map or sense surroundings throughout an unknown 

environment 
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4. Challenges and Open Problems

• Specific Topics 

• Communication and collaboration 

• New algorithms need to be developed to optimize coverage time. 

• The system must monitor the connectivity between UAVs and the ground control 
station

• Multi-hop connectivity of many UAVs is necessary to guarantee redundancy

• Effective resource utilization is essential in order to avoid communication losses

• Algorithms should be able to manage seamless communication for numerous UAVs 
in a complex environment. 

• Facilitating the sharing of drone data, position, and status is required

• One UAV needs to act as controller to maintain the formation during swarm 
operations

• If controller failure, another UAV should take the controller role. 

• Decentralization of the control system should be possible with an advanced algorithm

• The communication protocols should be able to reduce communication time and 
packet loss

Slide 71
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Path Planning- essential aspect in Multi-UAV systems

Many traditional algorithms have been re-used/adapted/developed for UAV environment

Many open research issues exist, (many requirements, constraints and factors)

3D space, static/dynamic environment, energy consumption requirements, specific types 
of UAVs and journey ranges, real-time problems, security and privacy,  partial knowledge 
on environment (including static/dynamic obstacles), cooperative tasks for swarms, etc.)      

PP algorithms:

Enhancements  are needed to allow more significant number of UAVs, real-time efficient 
PP, better adapted to changes in ever-changing environments (obstacles, weather etc.).

System efficiency needs to be increased

Enhance coordination and communication among UAVs to optimize group behavior and 
task allocation. 

Optimize and balance multiple objectives (minimizing risk, conserving energy, reducing 
travel time, etc.) 

Reduce system complexity and costs

    Integrate novel techniques based on AI/ML
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• Thank you !

• Questions?
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5G-AN

ABC

5G Access Network

 Artificial Bee Colony

ACO

AEO

Ant Colony optimization

Artificial Ecosystem Optimizer

AI 

ANN

AGWO

Artificial Intelligence

ANN Artificial Neural Networks

Adaptive GWO

AODV Ad Hoc On Demand Distance Vector

APF

ARA*

BA

Artificial Potential Field 

Anytime Repairing A*

Bat Algorithm

BFS 

BLP

Breadth-First Search

Binary Linear Programming 

CC Cloud Computing

CP Control Plane

CPP Coverage Path Planning

CR

CSA

Cognitive Radio

Cuckoo Search Algorithm

D2D Device to Device communication

DFS Depth-First Search 

DL Deep Learning

DN

DNN

Data Network

Deep Neural Network

DRL Deep Reinforcement Learning

DoS Denial of Services

DP

DPMC

Data Plane (User Plane UP)

Distributed Model Predictive Control

DTN Delay Tolerant Network

E2E

EHO

FA

End to End

Elephant Herding Optimization 

Firefly Algorithm

FRZ

GBFS

GDGACO

GEO

Flight Restriction Zone 

Greedy Best-First Search

Gain-Based Dynamic Green ACO

Golden Eagle Optimizer

GF

GNSS

Greedy forwarding

Global Navigation Satellite System

GS

GWO

Ground Station

Grey Wolf Optimizer

HRP Hybrid Routing Protocol

HTOL

ILP

IMOPIO

Horizontal Takeoff and Landing

Integer Linear Programming

Improved Multi-Objective PIO

IPP

IPA

Informative Path Planning

Immune Plasma Algorithm 

IoT

KF

LF

LQR

LP

Internet of Things

Kalman Filter

Lyapunov Function

Linear-Quadratic Regulator

Linear Programming

MANET Mobile Ad hoc Network

MAC Medium Access Control

MCC

MDP 

Mobile Cloud Computing

Markov Decision Process

MEC Multi-access (Mobile) Edge Computing

MILP Mixed-integer Linear Programming 

ML

MOP

MPC

Machine Learning

Multi-Objective Optimization Problem

Model Predictive Control
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NF Network Function

NLP

OPP 

Non-Linear Programming

Optimal Path Planning

PIO Pigeon Inspired Optimization

PP Path Planning

PRM Probabilistic Roadmap 

PRP

PSA-ACO

Proactive Routing Protocol

Parallel Self-Adaptive ACO

PSO Particle Swarm optimization 

QoE Quality of Experience

RAN Radio Access Network

RL

RLGWO

Reinforcement Learning

Reinforcement learning based GWO

RRP Reactive Routing Protocol

RRT Rapidly-exploring Random Trees 

SCF Store-carry-and-forward

SDN

TS

Software Defined Networking

Tabu Search 

UAV Unmanned Aerial Vehicle

UAVNET Unmanned Aerial Vehicle Network

UAV-BS UAV- Base Station

UAV-RS UAV Relay Station

UL Uplink

V2X

 VD

Vehicle-to-everything

Voronoi Diagram

VANET Vehicular Ad hoc Network

VG Visibility Graph

VM Virtual Machine

VTOL

WDQN

Vertical Takeoff and Landing

Whale inspired deep Q-network
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods (Cont’d - Details) 

• Cell decomposition 

• Approximate Cell Decomposition 

• It overlays a regular grid structure upon the environment space

• Decomposition into a set of structured cells: each cell’s location within the 
environment is represented by a Cartesian coordinate system

• The boundaries of cells remain rigid, such that they may not precisely correlate 
with objects and obstacles within the environment

• A cell’s total internal space is composed of free space and obstacle space

• A cell only partially filled by an obstacle is classified as obstacle space

• Implementation variants: 2D or 3D

Slide 82

Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity 

Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.

Example:  2D  Cell Movement Possibilities
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods {DETAILS)

• Cell decomposition (cont’d)

• Exact  Cell Decomposition 

• The space is divided into several non-overlapping polygon regions  

• Approaches: 

• Trapezoidal: the space is split in distinct convex cell regions 

• The method typically sweeps vertically left to right across the environment, 
appending vertical deconstruction lines, where an obstacle vertex is 
encountered 

• Boustrophedon: It minimizes the coverage path length in comparison to the 
trapezoidal, through reducing the number of polygon cell regions created

Slide 83

Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity 

Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.
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3.3 Environment Representation Methods (Details) 

• Cell decomposition (cont’d)

• Exact  Cell Decomposition (cont’d)

• Note: Boustrophedon is a style of writing in which alternate lines of writing are reversed, 
with letters also written in reverse, mirror-style

• Between cell regions, an adjacency relationships can be defined, leading to  a 
connectivity graph

• The graph nodes are placed in the free space cell region locations

• Result: a continuous free space path can be planned across the environment 
space based upon cell region relationships

Slide 84

Source: M,R. Jones, S.Djhael, K. Welsh Path-planning for Unmanned Aerial Vehicles with Environment Complexity 

Considerations: A Survey, ACM Comput. Surv., Vol. 1, No. 1, November 2022.

Trapezoidal conversion to Adjacency Graph
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods (Details)

• Cell decomposition (cont’d)

• Adaptive Cell Decomposition (applicable to 2D and 3D space)

• It deconstructs the environment only where an obstacle’s presence requires

• For a PP scenario an adaptive schema called (Quadtree) is constructed by dividing 
the space into four equal sub-regions

•  Where an obstacle exists, then regions are further recursively decomposed 
into four supplementary child regions until the desired stopping condition is met

• Cell decomposition define both free and obstacle space, so the range of movement 
available to UAVs within free space is unbounded

• Results: large search space for any PP algorithm

• Roadmap Representation

• Connectivity graph is constructed; the  nodes represent key free space locations 

• The graph construction strategies can be different

•  The edges may have weights (e.g., related to time or distance); they  represent the 
ability to transit safely between the adjoined nodes

•  This reduction of an environment into a graph-based structure, is similar to a 
classical route planning optimization problem

• where optimal routes are identified by comparing the sum of edge weights in 
candidate paths (additive metric)

• A PP algorithm is applied to this arrangement to discover an optimal path

Slide 85
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3.3 Environment Representation Methods  (Details)

Roadmap Representation (cont’d)

• Visibility graphs (VG)

• Let it be a set O of pairwise disjoint objects in the plane (considered as obstacles in 
UAV motion planning)

• The visibility graph is a representation model

Slide 86

Figure- Source:  M. N.Bygi,  3D Visibility Graph, 

https://sharif.edu/~ghodsi/papers/mojtaba-nouri-csicc2007.pdf

• For polygonal obstacles the vertices of these 
polygons are the nodes of the visibility graph

• Two nodes are connected by an arc if the 
corresponding vertices can see each other

• Algorithms for computing the visibility 
graph of a polygonal scene have been 
developed

• Computing the visibility graph: different 
complexity orders exist, for a polygonal scene 
with a total of n vertices: e.g., O(n2log n), O(k + n 
log n) (k is the number of arcs of the visibility 
graph)

• Weakness: in the construction process, 
generated paths pass within close proximity to 
the obstacles they seek to avoid
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods (Details)

• Roadmap Representation (cont’d)

• Voronoi diagrams and path solutions

• Let P = {p1, p2, …pn} be a set of points (called sites) in a 2D Euclidean plane 

• The space is decomposed into regions around each site, s.t. all points in the 
region around pi are closer than to any other point in P

• For UAV movement, one can consider the points in P as representing 
obstacles/threats 

• The  cells edges can be available paths (of an UAV) to the nearest node to the 
target positions 

• A PP algorithm searches the shortest path to go to the nearest node to the 
target positions

Slide 87

Source: Tong, Wu Wen chao, H. Chang qiang, X. Yong bo, Path Planning of UAV Based on Voronoi Diagram 

and DPSO H., Elsevier, Procedia Engineering 00 (2011) 000–000 4198 – 42031877-7058, 

doi:10.1016/j.proeng.2012.01.643, www.sciencedirect.com

http://www.sciencedirect.com/
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3. Environment Representation

3.3 Environment Representation Methods (Details)

• Roadmap Representation (cont’d)

• Probabilistic Roadmap

• Visibility graph and Voronoi: the path generation is dictated solely by the 
placement of obstacles within the environment

• A probabilistic approach deconstructs the available free problem space into 
a set of randomly placed connectivity nodes

• Connecting nodes with edges is based upon proximity to a nearest 
neighbor node, combined with the perceived visibility and ability to pass 
unhindered between nodes

• In path construction a significant level of environment knowledge is required 

• This construction method does not provide an optimal solution, but is able to 
guarantee completeness based upon the increasing number of nodes added

• A motion planner is said to be complete if the planner, in finite time, either 
produces a solution or correctly reports that there is none
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Source: M. Farooq et al., Quadrotor UAVs flying formation reconfiguration with collision avoidance using 

probabilistic roadmap algorithm. In 2017 International Conference on Computer Systems, Electronics and 

Control (ICCSEC), pages 866–870. IEEE, 2017.
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods (Details)

• Roadmap Representation (cont’d)

• Rapidly-exploring Random Trees (RRTs)

• RRT focuses upon a randomized approach for exploration of the environment

• The algorithm searches nonconvex, high-dimensional spaces by randomly building a space-

filling tree

• An explorative branching strategy is applied; branching paths are constructed originating from a 

root node

• The tree is constructed incrementally from samples drawn randomly from the search space 

and is inherently biased to grow towards large unsearched areas of the problem 

• A high  level of environment knowledge is required in tree construction to allow successful 

placement of future nodes

• RRT  offers a configurable strategy to manage tree growth and exploration of the problem space

Slide 89

Source: S.M. LaValle et al. Rapidly-exploring random trees: A new tool for path planning. 1998 Technical 

Report (TR 98–11). Computer Science Department, Iowa State University..
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods (Details)

• Roadmap Representation (cont’d)

• Rapidly-exploring Random Trees (RRTs) (cont’d)

• RRT 

• can handle problems with  obstacles and differential constraints 

(nonholonomic and kinodynamic) and can be used in autonomous robotic/UAV 

motion planning

• generates open-loop trajectories for nonlinear systems with state constraints

• can also be considered as a Monte-Carlo method to bias search into the 

largest Voronoi regions of a graph in a configuration space 

• Note 1: A nonholonomic system: - definition

• a mechanical system with velocity constraints not originating from position 

constraints (e.g.: rolling without slipping)

• its state depends on the path taken in order to achieve it

• the system is described by a set of parameters subject to differential constraints 

and non-linear constraints 

• Note 2: Kinodynamic planning (In  motion planning), is a class of problems for 

which velocity, acceleration, and force/torque bounds must be satisfied, together 

with constraints such as avoiding obstacles

Slide 90
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3. Path Planning in Multi-UAV Networks

3.3 Environment Representation Methods (Details)

• Artificial Potential Field (APF)

• The cell decomposition and roadmap approaches build an environment 

representation from prior known environment knowledge

• (APF) computes in real-time a directional force to be applied to a UAV, based on 

• the gravitational attractive forces applied by goal or target locations

• the cumulative repulsive forces applied by obstacles 

• In a real-world environment 

• the gravitational force is proportional to the Euclidean distance from the UAV to 

target locations

• the repulsive forces can be derived from mounted sensors capable of 

calculating obstacle distance 

• The UAV  makes successive evaluation of the resultant forces

• The abstract representation of APF field forces provided across a whole 

environment grants a UAV the potential for significant autonomy (to find a transit 

path across an environment)

• APF enables a reactive path-planning; dynamic obstacles influence APF forces in 

real-time allowing for adaptive navigation decisions

Slide 91

N. He et al., Dynamic path planning of mobile robot based on artificial potential field, 2020 Int'l Conf. on Intelligent 
Computing and Human-Computer Interaction (ICHCI),  IEEE, 2020.
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3. Path Planning in Multi-UAV Networks

3.5 Traditional Path Planning Algorithms 

• Depth-First Search (DFS) 

• It traverses a tree by exploring one node and its descendants at a time; a node 
is selected initially

• The search is progressively expanded to the deepest  nodes ( backtracking only 
when there are no more child elements to explore)

• If the deepest node does not contain the desired solution, the algorithm 
backtracks to the start of the tree and continues the search by exploring adjacent 
nodes on the right, following a similar deep format 

• This process continues until the solution is found 

• Problems: 

• DFS may miss large portions of the workspace since it tries to search several 
paths at a time before completing one path

• DFS may not always yield the optimal solution as it prioritizes the first 
successful path found, disregarding the time or steps taken to reach it, with the 
risk of falling into a loop of exploring an infinite depth 

• DFS can be time-consuming because it may delve into uncharted depths of a 
single node without necessarily leading to a viable solution
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Source: L. Paulino, C. Hannum, A.S. Varde and C.J. Conti, Search methods in motion planning for mobile robots, in 
Intelligent Systems and Applications, edited by K. Arai. Springer International Publishing (2022) 802–822.  
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3. Path Planning in Multi-UAV Networks

3.5 Traditional Path Planning Algorithms 

• Breadth-First Search (BFS) 

• In BFS all the current level nodes are visited prior to their descendants, following a 
systematic approach where shallow nodes are expanded first by exploring all the 
subsequent level nodes along the path.

• DFS versus BFS

• DFS is  exploring a single path to its deepest depths 

• BFS expands its search by including all nodes within each layer, adhering to 
the FIFO principle implemented through a queue structure.

• BFS could be slower than DFS in finding a path, however, it can be preferred 
due to its systematic exploration of all nodes within each layer; it is able  to keep 
track of visited nodes before moving on to the next layer.

• BFS requires more memory compared to DFS due to the need to store all visited 
nodes in the order they were encountered

• This storage step is important in BFS tree traversal as it influences the 
sequence in which the algorithm explores nodes in the subsequent layer 
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Source: L. Paulino, C. Hannum, A.S. Varde and C.J. Conti, Search methods in motion planning for mobile robots, in 
Intelligent Systems and Applications, edited by K. Arai. Springer International Publishing (2022) 802–822.  
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3. Path Planning in Multi-UAV Networks

3.5  Traditional Path Planning Algorithms 

• They are related to specific representations of the environment

• Dijkstra Algorithm 

• Classical solution to solve the shortest path problem

• It make a breadth first state space search looking for the shortest distance of any 
point in the whole free space, layer by layer, through the initial point until it reaches the 
target point

• Issue: In UAV PP, due to the use of free search, the amount of data of Dijkstra 
algorithm is greatly increased, which affects the speed of solution

• Different researchers have improved and optimized Dijkstra algorithm 

• A* (A-Star)

• Used in path finding problems on graphs and meshes

• It is using a heuristic function to perform an informed search, to estimate the 
cost of the remaining path to the goal

• It has fast calculation speed and can efficiently obtain UAV path information. 

• It is efficient in environments with precise and known information

• Issue: its performance degrades in complex and unknown 3D environments (lack 
of enough information about space structure) 
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Source: C. G. Arnaldo , M.Z. Suárez , F.P.Moreno and R.Delgado-Aguilera Jurado, Path Planning for Unmanned Aerial 
Vehicles in Complex Environments Drones 2024, 8, 288. https://doi.org/10.3390/drones8070288
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3.5 Traditional Path Planning Algorithms

D* (D-Star) 

• D* - real-time search algorithm that recalculates the route when changes occur 
in the environment; It is suitable for dynamic environments

• Issue: its computational complexity can be high (e.g., in 3D, with  many moving 
objects and obstacles

• Theta* (Theta-Star)

• It is an improvement of A* that performs a search in the discretized search space 
using linear interpolation to smooth the path

• Theta* can produce more direct and efficient trajectories than A*

• Issue: lower performance in environments with multiple obstacles and complex 
structures

• PRM (Probabilistic Roadmap) 

• It creates valid paths through the random sampling of the search space 

• Issues:

• it can generate valid trajectories, but its efficiency is lowering by the density 
of the search space 

• it may require a high number of sampling points to represent accurate 
trajectories in a 3D environment with complex obstacles
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3.5 Traditional Path Planning Algorithms 

• RRT (Rapidly Exploring Random Tree)

• RRT uses random sampling to build a search tree that represents the possible 
trajectories of the UAV

•  It is widely used in PP for complex and unknown 3D environmentswith obstacles 
and unknown structures

• It has a probabilistic nature and able to efficiently explore the search space

• Note: Many other RRT variants have been developed in different studies

• Examples

• RRT* (Rapidly Exploring Random Tree Star)

• It is an enhanced RRT; it optimizes the trajectories generated by the original algorithm

•  RRT* reduces the path length and optimizes the tree structure

• It can provide optimal routes, but its computational complexity is higher in 
complex 3D environments

• RRT*-Smart

• It accelerates the convergence rate of RRT* by using path optimization (in a 
similar fashion to Theta*) and intelligent sampling (by biasing sampling towards 
path vertices, which – after path optimization are likely to be close to obstacles)
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3. Path Planning in Multi-UAV Networks

3.5 Traditional Path Planning Algorithms 

• A*-RRT and A*-RRT*

• A two-phase PP method that uses a graph search algorithm  

• 1. search for an initial feasible path in a low-dimensional space (not considering the 
complete state space) avoiding  hazardous areas and preferring low-risk routes

• 2. which is then used to focus the RRT* search in the continuous high-dimensional space 

• Real-Time RRT* (RT-RRT*)

•  A variant of RRT* and informed RRT* that uses an online tree  rewiring strategy that allows the 
tree root to move with the agent without discarding previously sampled paths, in order to obtain real-
time path-planning in a dynamic environment

• Theta*-RRT

• A two-phase PP method similar to A*-RRT* that uses a hierarchical  combination of any-angle 
search with RRT motion planning for fast trajectory generation in environments with complex 
nonholonomic constraints

• …. other of RRT variants 

• Artificial Potential Fields

• It uses attractive and repulsive forces to guide the UAV movement towards the goal and away 
from obstacles

• Transform the impact of targets and obstacles on the movement of the drone into an artificial 
potential field;  It can generate smooth trajectories 

• Issue: it may suffer from local minima and oscillations in environments with complex 
obstacles
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3. Path Planning in Multi-UAV Networks

3.5 Traditional Path Planning Algorithms 

Time complexity of the UAV path planning algorithms

Voronoi Diagram  𝑂(𝑛 log(𝑛)) ; n is the number of the vertices

Visibility Graph      𝑂(𝑛2);  n is the number of the vertices

PRM     𝑂(𝑛 log(𝑛)) ; n is the number of iterations

RRT   𝑂(𝑛 log(𝑛)); n is the number of iterations

Dijkstra           𝑂(|𝐸| + |𝑉 | log|𝑉 |) ; V is the set of vertices, E the set of edges

BFS & DFS           𝑂(|𝐸| + |𝑉 |) 

A*            𝑂(𝑛2) ; n is the number of vertices

Exact Cell Decomposition; 𝑂(𝑛 log(𝑛));  n is the number of obstacle vertices
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3. Path Planning in Multi-UAV Networks

Slide 99

3.6 PATH Planning Algorithms Examples

• Algorithm 1 Standard Rapidly-exploring  Random Trees (RRT) Algorithm

PP objective : to find a path from a starting position (xstart) to a goal position 
(xgoal) through a configuration space. 

1: Choose an initial node xinit and add to the tree t

2: Pick a random state xrand in the configuration space C

3: Using a metric r, determine the node xnear in the tree that is nearest to xrand

4: Apply a feasible control input u to move the branch towards xrand at a pre-

chosen incremental distance

5: If there is no collision along this branch, add this new node xextend to the tree t

6: Repeat steps 2 to 5 until xgoal is included in the tree t

7: Find the complete path from xinit to xgoal

Source: Mangal Kotharia Ian Postlethwaiteb, Da-Wei Gua, A Suboptimal Path Planning Algorithm Using 

Rapidly-exploring Random Trees, Int'l Journal of Aerospace Innovations, Volume 2 · Number 1&2 · 2010

Source: S. M. LaValle, “Rapidly-exploring Random Trees: A New Tool for Path Planning,” 1998, TR 98-11, 

Computer Science Dept., Iowa State University.
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Slide 100

3.6 PATH Planning Algorithms Examples

Algoritm 2: Modified RRT Algorithm

• The tracking of the generated waypoints depends on the feedback control policy
• The resultant path accuracy depends on the validity of the state space model being used. In 

reality, there exist also sensor inaccuracies, wind effects and other unmodeled factors.
•  Because of incremental growth, the path generated usually includes several extraneous 

waypoints, which is undesirable (travel cost ) 
• RRT can be extended to generate paths in the output space 

1: Choose an initial node winit and add to the tree t

2: Pick a random waypoint wrand in the space C, with small probability, set wrand 

= wgoal to pull the graph towards the goal

3: Using a metric r, determine the node wnear in the tree that is nearest wrand

4: Extend the branch toward wrand by an incremental distance while taking care 

of the turn angle constraint

5: If there is no collision along this branch, add this new node wextend to the tree

6: Repeat steps 2 to 5 until wgoal is included in the tree t

7: Find the complete path from winit to wgoal

Source: S. M. LaValle, “Rapidly-exploring Random Trees: A New Tool for Path Planning,” 1998, TR 98-11, 

Computer Science Dept., Iowa State University.
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3.6 PATH Planning Algorithms Examples

 Algorithm 3: PRM algorithm

Input: A graph with initial and goal points

Output: Find the shortest path between the start and goal

1 The vertices 𝑉 ← ∅
2 The edges 𝐸 ← ∅
3 while next vertex is not goal do
4 𝑐 ← a random configuration in the free space
5 𝑉 ← 𝑉 ∪ 𝑐
6 𝑁𝑐 ← a set of neighbor vertices chosen from 𝑉
7 for all 𝑐′ ∈ 𝑁𝑐 do
8 if the line (𝑐, 𝑐′) is collision free then
9 add the edge (𝑐, 𝑐′) to 𝐸
10 Find the shortest path from the start point to the goal on the constructed   
graph using a shortest PP algorithm
11 return The shortest path

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.Idoumghar, UAV Path Planning Techniques: A Survey, RAIRO-

Oper. Res. 58 (2024) 2951–2989 RAIRO Operations Research, https://doi.org/10.1051/ro/2024073 www.rairo-ro.org
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3.6 PATH Planning Algorithms Examples

Algorithm 4: Reinforcement learning algorithm for UAV path planning.

Input: A state space 𝒮, an action space 𝒜, a reward function 𝑅(𝑠, 𝑎), a discount factor 
𝛾, an exploration rate 𝜖, and a maximum number of episodes 𝑁

Output: A policy 𝜋(𝑠) that maps states to actions
1 Initialize a 𝑄-function 𝑄(𝑠, 𝑎) arbitrarily Initialize an empty replay buffer 𝐷
2 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝑁 do
3 Initialize the state 𝑠0 to the start position
4 while 𝑠𝑡 is not the goal position do

5 With probability 𝜖 choose a random action 𝑎𝑡 from 𝒜, otherwise choose 𝑎𝑡 = argmax𝑎 
𝑄(𝑠𝑡, 𝑎)
6 Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1

7 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐷
8 Sample a mini-batch of transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠 𝑖+1) from 𝐷
9 Update the Q-function using the Bellman equation:

𝑄(𝑠𝑖, 𝑎𝑖) ← 𝑄(𝑠𝑖, 𝑎𝑖) + 𝛼 (𝑟𝑖 + 𝛾 max𝑎 𝑄(𝑠 𝑖+1, 𝑎) − 𝑄(𝑠𝑖, 𝑎𝑖))
10 Set 𝑠𝑡 = 𝑠𝑡+1

       End while
    End do
11 return The learned policy 𝜋(𝑠) = argmax𝑎 𝑄(𝑠, 𝑎)

Source: S.Ghambari, M.Golabi, L.Jourdan, J.Lepagnot and L.Idoumghar, UAV Path Planning Techniques: A Survey, RAIRO-

Oper. Res. 58 (2024) 2951–2989 RAIRO Operations Research, https://doi.org/10.1051/ro/2024073 www.rairo-ro.org
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• 3.7 Swarm Path Planning Algorithms – Examples

• 3D Path Planning 

• Improved GWO - for 3D PP determines a feasible flight trajectory while avoiding obstacles 
• R. K. Dewangan, A. Shukla, andW.W. Godfrey, 3D path planning using grey wolf optimizer for UAVs, Int. J. Speech 

Technol., vol. 49, no. 6, pp. 2201_2217, Jun. 2019.

• Probabilistic road map (PRM) - it finds a multi-trajectory PP for the UAV cluster

• The UAV swarm can reach different places (marked and unmarked) in different 
situations and support emergency conditions in the city environment 

• Á. Madridano, A. Al-Kaff, D. Martín, and A. A. D. L. de la Escalera, 3D trajectory planning method for UAVs swarm in 
building emergencies, Sensors, vol. 20, no. 3, p. 642, Jan. 2020.

• Multi-swarm fruit fly optimization algorithm (MSFOA) – solves a non-linear optimization 
problem with multiple static and dynamic constraints, through a multi-UAV collaborative PP 
path on 3D rugged terrain 

• K. Shi, X. Zhang, and S. Xia, Multiple swarm fruit fly optimization algorithm-based path planning method for multi-
UAVs,'' Appl. Sci., vol. 10, no. 8, p. 2822, 2020. 

• Pigeon Inspired optimization (PIO) - the UAV is used for 3D oil field detection

• PIO optimizes the initial path, and then Fruit Fly Optimization Algorithm (FOA) 
performs local optimization to avoid obstacles while finding the best path. 

• F. Ge, K. Li, Y. Han, and W. Xu, PP of UAV for oil field inspections in a 3D dynamic environment with moving 
obstacles based on an improved pigeon-inspired optimization algorithm, Appl. Intelligence, 2020

Slide 103

Source: Y. Zhou, B. Rao, W. Wang, UAV Swarm Intelligence: Recent Advances and Future Trends, IEEE Access, 

September 2020, DOI  10.1109/ACCESS.2020.3028865
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3.7 UAV Swarm Path Planning- Examples

Dynamic Path Planning 

• The PP has special requirements In  dynamic environment contexts 

• Multiple path and selection

•  Several candidate paths are generated using the cubic spline second-order continuity 
principle

• A total cost function is defined to select the optimal obstacle avoidance path

• This method has short time consumption and strong r.t. performance
• X. Chen, M. Zhao, and L. Yin, Dynamic path planning of the UAV avoiding static and moving obstacles,  J. Intell. 

Robotic Syst., vol. 99, nos. 3_4, pp. 909_931, Sep. 2020.

• Adaptive route planning –in changing unknown condition, with complementary sensors 

• Memory-based Wall Following-Artificial Potential Field (MWF-APF) 

• The algorithm switches between Wall-Following Method (WFM) and Artificial Potential 
Field method (APF) with improved situation awareness capability.

• It solves some problems of the WFM and APF

• H. Wang, M. Cao, H. Jiang, and L. Xie, Feasible computationally effficient path planning for UAV collision 
avoidance, Proc. IEEE 14th Int. Conf. Control Autom. (ICCA), Jun. 2018, pp. 576_581.
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3.7 UAV Swarm Path Planning Examples

Dynamic Path Planning (cont’d)

• UAVs in complex outdoor environments (e.g., isolated disaster scenes)

• Track detection and automatic scene understanding based on abstract vision

• Method: Combine a support vector machine-based tracking detection and tracker 
combination framework

• Achieve tracking direction estimation and stalking with lower computation and input 

• Y. Liu, Q. Wang, Y. Zhuang, and H. Hu, A novel trail detection and scene understanding framework for a 
quadrotor UAV with monocular vision, IEEE Sensors J., vol. 17, no. 20, pp. 6778_6787, Oct. 2017

• Path planning of UAVs based on collision probability 

• A method for calculating the collision probabilities of UAVs under the constraints of mission space 
and the number of UAVs

• In cluster flight mode, automatic tracking and prediction of UAV cluster tracks should be  
implemented to avoid path conflicts 

• To address the inconsistency problem because of noise caused by the state information of multi-
UAV communication, a state estimation method is proposed based on the Kalman algorithm

• [Kalman filtering (a.k.a linear quadratic estimation) uses a series of measurements observed over time 
(including statistical noise and other inaccuracies), to produce estimates of unknown variables, more 
accurate than those based on a single measurement, by estimating a joint probability distribution over the 
variables for each time-step]

• Z. Wu, J. Li, J. Zuo, and S. Li, Path planning of UAVs based on collision probability and Kalman filter, IEEE Access, 
vol. 6, pp. 34237_34245, 2018.
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https://en.wikipedia.org/wiki/Statistical_noise
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3.7 UAV Swarm Path Planning

Optimal PP- Examples

• Fixed-wing UAV-assisted mobile crowd perception (MCS)

• The joint PP and task allocation problems are considered aiming to energy efficiency

• The NP-hard joint optimization problem is transformed in bilateral two-stage matching 
problem

• Good results in energy consumption, overall profit and matching performance
• Z. Zhou, J. Feng, B. Gu, B. Ai, S. Mumtaz, J. Rodriguez, and M. Guizani, When mobile crowd sensing meets UAV: 

Energy-ef_cient task assignment and route planning, IEEE Trans. Commun., vol. 66, no. 11, pp. 5526_5538, Nov. 
2018.

• Group of heterogeneous fixed-wing UAVs with traversing multiple targets and 
performing continuous tasks

• Optimal flight trajectory is found;  a coupled distributed planning method combining 
task assignment and trajectory generation is used

• The cooperative task planning problem is reconstructed

• The method improves the system operating rate; it can be applied to practical tasks 

• W.Wu, X.Wang, and N. Cui, `Fast and coupled solution for cooperative mission planning of multiple 
heterogeneous unmanned aerial vehicles,' Aerosp. Sci. Technol., vol. 79, pp. 131-144, Aug. 2018.
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