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Overview -- (Talk Breakdown)

1. Big Picture — Motivation & Problem Domain
 Cycle: TED -- PREP -- TED -- WAITR

2. ROBUST Networks (Overview)
* Math terms and Analysis

3. PREP (Mapper): per-window spatial pruning — NavGraph
* Heatmap Abstraction

 Proximal Recurrent

4. WAITR (Planner): spatiotemporal optimization — stitched long-horizon route (MPC repair)
« Pathlets

5. TED (Mission Compiler): policy-to-tensor compilation & stochastic updates

« Contract (Interfaces): The Mission Tensor Producer (TED) « Consumers (PREP, WAITR)

6. Q&A
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The Problem

Across many domains, teams of agents must coordinate & act while the world keeps changing.

Dynamics: goals shift; risks/closures appear; conditions evolve.

Knowledge decays: observations age; confidence drops over time.

Constraints: access rules; safety policies; limited time/energy/budget.

Coordination: multiple robotic/human agents must avoid conflict and share

Consequence: static plans go stale; full replans are costly and brittle. Explorer Agents Path History - Time Step: 0

. Selected objects: 0

W Simulation time: 00:00:00.05 (dt=50.0 ms, ppf=1)
Simulation scripts called 3 (1045 ms)
Proximity sensor handli bled Calculations: 0, detections: 0 (0 ms)
Vision sensor handling enabled (FBO) Calculations: 0, detections: 0 (0 ms)
Dynamics handling enabled (Bullet 2.78) Calculation passes: 10 (5 ms)
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Introduction: Background

Spatiotemporal Data Challenges and ROBUST Networks Heatmaps - Time Step: 0

The Challenge:

Maximize Observational Coverage in Spatiotemporal Environments ---Q'En-i ==:--===:'

The Need: 2ol =

A framework to 'choreograph' data acquisition of dynamic temporal events.

This Research:
Focus on observer positioning that supports both scalability, and adaptability.




Introduction: Research Problem

Main Problem Statement:

Bipartite Networks:
Networks comprising two distinct classes of nodes, with links only between
nodes of different classes.

Spatiotemporal Dimensions:
These networks evolve over time and space, adding complexity to their
structure and dynamics.

What Makes This Challenging?
Variability: The dynamic nature of the networks, with nodes and links
changing over time, stochastically.
« Complexity: Introducing both spatial & temporal dimensions means
traditional methods may not be directly applicable.
« Optimality: Determining what "optimal" means in the context of these
networks, given the numerous metrics & considerations.

Why It Matters:

Optimizing these networks can lead to more efficient resource use, faster
response times, and better outcomes in applied scenarios.

Y-AXis

Heatmaps

- Time Step: 0




The Goal (what success looks like)

Produce feasible, high-value, explainable routes/assignments for one or more agents over a time horizon,
continuously adapting as conditions and policies change.

Paths with Perfect Knowledge - Frame: O

e Decision:

routes/assignments per agent across windows.
IIIII IIII g =
e Objective: ] mn
maximize mission value subject to cost/feasibility

o (time, energy, risk, access)

e Outputs:
long-horizon routes
+ rationale (why-trace)
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Introduction: Research Hypotheses

H1: Analysis & Insight of Observational Capabilities:
e ROBUST networks proposes a novel set of spatiotemporal graph analysis tools, with coverage, robustness measures, and centrality
distribution analysis.

H2: Optimized Observer Node Placement:
e ROBUST networks will achieve an optimal balance between minimizing node insertions and maximizing event capture, demonstrating
superior resource allocation that will outperform conventional models ( k-means, dbscan, LP, etc.).

H3: Scalable & Rapid Execution in Support of Real-Time Decision Making:
e ROBUST networks are hypothesized to integrate the efficiency of vectorized computations and GPU-accelerated techniques, achieving
the rapid processing speeds, while simultaneously delivering high accuracy as compared to much slower linear programming
approaches.




The System at a Glance (closed loop)
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2 — ROBUST Networks — Motivation

The Need for Spatiotemporal Bipartite Network Models

The Missing Link:
We lack models that integrate both spatiotemporal interactions AND the distinct
relationships within bipartite networks.

Consequences:
« Missed insights into complex systems
» Inability to optimize for specific goals

The Opportunity:
By extending network theory to merge these concepts, we can unlock greater
accuracy and strategic control.

ROBUST

Networks
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2 — ROBUST Networks — Representation & Analytics

Definition: A spatiotemporal, bipartite model of dynamic observers < dynamic observables with metrics for coverage, wiring, and resilience.

* Ranged observers (myopia): View limits (range/FOV/LOS) are a defining property; they determine which observables are even feasible per
window.

« Bipartite core: Cleanly separates who senses from what is sensed to reason about coverage and opportunity.

* Unipartite projection: Project to observable—observable links to cluster what needs sensing and identify high-value regions. '

+ Spatiotemporal windows: Evolve structure as { G, }; attributes and feasibility change with time.

; witnessed
- ’ observable
Observor “

Bipartite

&n,
\ e g

observer

=)
Unipartite ) .

hidden
observable
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2 — ROBUST Networks — Mathematical Formulation

Extending Spatiotemporal Networks to ROBUST Networks

Mathematical Formulation:

robust

(VEPTA,A.)

V: Set of all nodes, divided into:

* V, Observer Nodes, Entities capable of observing events.
* Vg Observable Nodes, Events/ phenomena that is observable
E:  Set of edges between observer and observable nodes.

Sets and Spatial Positioning & Temporal Behaviors
e Spatial Positioning ( P):
e Temporal Domain (T):

Maps node locations at timestep.
Represents the time dimension.

Observed vs. Unobserved

° VE"”S Observable nodes within the myopic range.
° VE””"”S Observable nodes outside the myopic range.

Node and Edge Attributes
e Node Attributes (A, ):
e Edge Attributes (A, ):

Time-variant characteristics of nodes.
Time-variant characteristics of edges.
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2 — ROBUST Networks — Measures & Analysis

Novel Measures for ROBUST Network Analysis

Six spatial metrics that turn structure into decisions (seed, add links, split spans, harden nodes).
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2 — ROBUST Networks — Spatial Metrics for Node Analysis

Myopic Degree — Local Neighborhood Density

Definition: Measures the connectivity of a node within a specific spatial range, focusing
on the immediate neighborhood density.

Purpose: Quantifies a node's connections within a defined proximity, highlighting its
interaction with nearby nodes.

Mathematical Representation

The Myopic Degree or Spatial Degree of a node v, is given by:

Spatial Degree(v.) = | {v. € V. d(P(v.), P(v.))< 6 } |

where 6 represents a threshold distance for considering an edge to exist.

Why it matters

Finds hotspots vs deserts at the current window.

Use it to decide:

Dense = seed medoids / anchor patrols.
Sparse = insert/retask observers..
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2 — ROBUST Networks — Spatial Metrics for Node Analysis

Spatial Closeness Centrality — Global Reach

Definition: A measure assessing a node's centrality within a network, based on its spatial
distance to all other nodes.

Purpose: Provides a global perspective on a node's position and influence by considering
its average spatial distance from the entire network.

Mathematical Formulation

The Spatial Closeness Centrality of a node v, is defined as:

-1

Cooseness(vi) = | > d(P(v:), P(v)))

v; €V v #v;

where d( P(v), P(vj) ) represents the spatial distance between nodes v, and v

Why it matters

Picks globally near sites that minimize average travel to everything.

Use it to decide:

Choose cluster medoids/relays; deprioritize peripheral anchors.

- -
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2 — ROBUST Networks — Edge-Based Spatial Metrics
Spatial Edge Density — Constrained Wiring

« Definition: Evaluates the network's closeness to maximal connectivity within spatial
constraints, focusing on the overall edge concentration.

« Key Aspect: Takes into account the spatial arrangement and limitations such as physical
distance and geographical barriers, offering a global connectivity perspective.

Mathematical Formulation
« This measure adapts traditional edge density by considering the maximum feasible edges
within spatial limitations, rather than the theoretical maximum in a complete graph.

Number of Actual Edges . .
Maximum Feasible Edges under Spatial Constraints ’

Spatial Edge Density =

Why it matters

* Reveals if we’re under-wired given feasibility (range/LOS/barriers)

Use it to decide:
« Raise candidate K or add links where density is low Less Clonnected Network
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2 — ROBUST Networks — Edge-Based Spatial Metrics

Edge Length Proportion — Long-Edge Burden

« Definition: A spatial metric quantifying the proportion of an individual edge's
length relative to the total length of all edges in a network.

« Purpose: Provides insights into the significance of a specific edge within the
overall network structure, useful for infrastructure planning and spatial resource

optimization.

Mathematical Representation
« The Edge Length Proportion of edge (e) is calculated as:

Length of edge e
Zall edges e’€E Length of edge e’

Edge Length Proportion (of edge e) =

This ratio evaluates an edge's scale of contribution to the network's total length,
highlighting its relative importance.

Why it matters

» Flags fragile, costly spans dominating movement.

Use it to decide:
« Cap edge length & insert intermediates to split long hops.

18



2 — ROBUST Networks — Graph-Based Spatial Metrics

Spatial Clustering Coefficient — Compactness

Purpose: Adapts the traditional clustering coefficient for spatial networks, emphasizing the
importance of both the number and compactness of closed triplets. °
®
]

Insight: Offers a measure of the tendency for nodes to form tightly-knit, geographically
proximal communities, enhancing our understanding of spatial network dynamics.

Mathematical Representation |

Number of closed triplets involving v '
Spatial Clustering Coefficient(v) = *
il Glisieses Costalens(y) Number of all possible spatially close triplets involving v ®

Why it matters

Quantifies tight, efficient neighborhoods (closed triplets within a radius)

Use it to decide:
Prefer compact clusters for stable local ops; avoid diffuse ones as anchors. «———"



2 — ROBUST Networks — Graph-Based Spatia

Metrics

Spatial Resilience — Failure Impact

« Core Concept: Goes beyond edge connectivity, focusing on preserving the integrity of spatial
segments under the control or influence of nodes.

« Purpose: Measures network robustness in terms of spatial coverage and influence.

Mathematical Representation

1
R, = m Zﬂéin’cact(s(vi»

v; EV

Why it matters

« Measures coverage lost when a node fails (segment integrity)

Use it to decide:
« Harden/duplicate high-criticality nodes; pre-plan alternates.

Original Network

Modified Network (Node Removal)
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3 — PREP Mapper — Proximal Recurrence Extract & Project

* Reality: Missions live in continuous space; value, risk, and feasibility change over time.

« Without PREP: Pixels/raw POls — huge search, noisy picks, slow replans.
 PREP’s job: Extract the top-K candidate locations per window using (PR/WPR).
* Then:

* Stationary case: place observers at those K locations.

* Mobile case: use those locations to build a sparse, feasible NavGraph for planning.

Heatmaps - Time Step: 0 Heatmaps - Time Step: 0
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3 — PREP Mapper — Heatmap Abstractions

* We use a field/tensor to encode Priority (not just “heat”).

* The field prioritizes the spatiotemporal operational space for a given context.
* The context is swappable (policy/data); the planner contract stays the same.
* Same PREP logic works for any ROI (crisis, utility, uncertainty, ...).

* Adynamic field simply means cell values change over time.

» Adynamic field means that a cell may account for multiple events over time.

NRL IASNFS

98°W

92°W

Nowcast valid at 0000/01/00 00Z
W 88°W 84°W
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3 — PREP Mapper — Bipartite Dynamics

Analyzing Efficacy & Coverage of Observers

Algorithm Overview

- Observer Nodes
- Event Nodes

Input t

Myopic
Filtering

i

Link
Generation

i

Centrality
Ranking

Event
Classifier

v

Output
- ranked observers

- observed points

Goal:

To identify coverage areas, detect gaps, & pinpoint observer placement weaknesses.

Frequency
N
1

Degree Distribution of Observers

Degree

14
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3 — PREP Mapper — Unipartite Dynamics

ROBUST Graphs and Proximal Recurrence

Objective:
+ Network Analysis: Employ graph theory to analyze the distribution of resources :
and to identify key points for optimal observation within the network.

Approach (ROBUST): /
Conceptualize the placement problem within the ROBUST framework, focusing on
network characteristics derived from graph theory.

Step-by-Step Approach:
4

N
1. | Event Point Extraction: Isolate unobserved event points from the ROBUST Px ={ X9 X,y ooy X }s
network, which represent potential areas requiring coverage. expected: ( O(n) ) P ={ }
i BTN SPRTIN

o J

4 N
2. | Link Generation: Calculate the connections between unobserved points within the

observer's range, constructing a graph where points are nodes and links indicate C={(e;;e;):e,e. € UL i#j}

\potential coverage. expected: ( O(m?) ) / / )

3. | Degree-Based Sorting: Organize event points in descending order of their
degree—i.e., the number of links to other points—prioritizing points with the highest
connectivity for resource placement. expected: ( O(m log m) )

D={C EC

: C. is maximal dense}
sorted i




3 — PREP Mapper — Unipartite Dynamics

Proximal Recurrence Clustering

Proximal Recurrence (PR)
+ Objective: Maximize monitoring efficiency by identifying areas with a high
concentration of unobserved events. 5

e Steps: 81
1. Count Events Within Range: Assess each unobserved event to count
nearby events within sensor range, including both existing and predicted
future events.

2. Identify Densest Cluster: Find the area with the highest density of 5

events, using the counts from step 1 as a guide. >

3. Select for Node Insertion: Choose the identified densest cluster as the
priority location for deploying a new sensor node.

T
w

Number of Overlapping Circles

Unobserved Points: Blue dots are locations & circle ts view range. N
Interpretation of Color Intensities 0
- Black: Not monitored.
 Dark Red: Low overlap and coverage
 Red: Moderate overlap and coverage
. : High overlap and coverage.
. ; Optimal due to highest overlap.

N



3 — PREP Mapper — Unipartite Dynamics

Maximizing Coverage with Optimal Placements

Problem:
« Multiagent Temporal Pathing of Ranged Observational Units

Algorithm Overview

Heatmap Generation:

Create a matrix representation of point density to simplify the problem space.

Kernel Convolution:
Apply a circular kernel to the heatmap to map out potential coverage zones.

Centroid Identification:
Employ an iterative process to select optimal resource locations, enhancing

coverage efficiency.
NP4

Iterative Optimization:
Remove covered points from consideration, preventing redundancy.

Aggregated Event Points
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3 — PREP Mapper — Unipartite Dynamics

Heatmap Creation for Point Density Matrix

Point Density Heatmap
Heatmaps, represented as matrices of spatial point densities, dramatically

reduce the O(n?) complexity typically associated with point-to-point evaluation.
40

Binning as Spatial Partitioning

Through binning, points are partitioned into discrete spatial indices based on

their coordinates, creating a higher-level density matrix. Each cell within this

matrix represents the aggregate density of points. 30

Towards Practical Application >
The implementation leverages computational accelerations like CUDA to handle
large-scale datasets effectively. This ensures the algorithm's scalability and
enhances its efficiency.

20

10

Heatmap of Aggregated Event Points




3 — PREP Mapper — Unipartite Dynamics

Kernel Convolution for Coverage Mapping

Kernel Convolution:
Apply a predefined shape (e.g., a circle) that represents the area each point
covers. The radius of this shape correlates to the coverage area.

Convolution Process:

The algorithm overlays this kernel shape onto the heatmap matrix. Convolution
identifies regions with high densities of points under the kernel area, indicating
high potential for coverage.

Identifying Coverage Areas:

By scanning across the heatmap, convolution highlights areas where the
cumulative density—under the kernel's footprint—reaches a maximum. These
areas signify optimal locations for resource placement to maximize coverage.

Coverage Map After Convolution




3 — PREP Mapper — Unipartite Dynamics

Identifying Optimal Placements

Process Overview:
The algorithm seeks out the maximum values in the coverage map,
which result from the convolution process, as potential centroids.

Iterative Selection:
« Initial Identification: Locate the highest density area in the
coverage map as the first centroid.

« Coverage Optimization: After selecting a centroid, the algorithm
"zeros out" the points within its coverage radius on the heatmap.
This step prevents double counting of covered points in
subsequent iterations.

* Repeat Until Completion: Continue this process, iteratively
identifying and zeroing out coverage areas, until the maximum
predetermined number of centroids are selected or no significant
points remain uncovered.

Maximizing Coverage:

Through this iterative approach, the algorithm efficiently distributes
centroids to areas of highest point density, ensuring optimal coverage
across the entire dataset.

Selected Centroids




3 — PREP Mapper — Output - Nav Graph

Heatmaps - Time Step: 0

Proximal Recurrent Event Partition (PREP) Mapper - Overview

Input Data

Node Generation

Link Generation

> Waypoint Network

Get Observables

Unobserved Dis-
tance Matrix

Get Observers

Link Closest Nodes
by Move Threshold

Filter for Unobserved

Add Bridge
Nodes if needed
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4 — WAITR Planner — Motivation

e Goal: optimize long-horizon routes over time windows with no-overlap between selected paths.
e Inputs: per-window Nav Graphs from PREP + seam costs.

e Output: stitched, deconflicted multi-agent plans over (t=1..T).

Heatmaps - Time Step: 0 Heatmaps - Time Step: 0
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4 — WAITR Planner — Observer Nodes - Sampling Behaviors

Observer Movement: Adapting to a Dynamic World

Types of Observers
« Static: Fixed location, ideal for consistent monitoring of critical areas.
« Dynamic: Capable of movement, enhancing adaptability.
« Discrete: Move at intervals or in response to triggers.
« Continuous: Can move in real-time for tracking and rapid adjustment.

Environment Matters
* Obstacle Avoidance: Navigating through physical barriers.
« Terrain Adaptation: Compatibility with various environments.
 Energy Management: Efficient use of power.

Asymmetric Movement:
ROBUST may leverage a mix of observer types for a balanced and effective approach.

w
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4 — WAITR Planner — Pathlets & the Lookup Table

Build pathlets

Precompute shortest simple paths with £ HmaxH_{\max}Hmax hops between candidate nodes in
GtG_tGt. Each path = a pathlet.

Store in the Lookup Table (LUT).
For each ordered pair keep one best entry: id, start—end, hops, cost/length, nodes.

Why this step.
Converts into a cache of reusable local routes, making temporal stitching fast and stable.

Window t — NavGraph G_t

start end hops cost nodes

A C 2 2:2 A—B-C
A E 2 20 A—D—E
A G 2 2:1 A—D—G
B D 2 2.1 B—A—D
B F 2 26 B—E—F
B H 2 27 B—E—H
C A 2 22 C—B—A
C E 2 25 C—F—=E
C | 2 25 C—F=l

D B 2 21 D—A—B
D F 2 1.9 D—E—F
D H 2 18 D—G—H
E A 2 20 E—D—A
E C 2 25 E—F—-C
E G 2 19 E—D—=G
E | 2 2.0 E—F—l

F B 2 26 F—E—B
F D 2 19 F—E-=D
F H 2 1.9 F—l—H

G A 2 2.1 G—D—A
G E 2 19 G—D—E
G | 2 17 G—H—l

H B 2 27 H—E—B
H D 2 18 H—G—=D
H F 2 19 H—l—=F

| Cc 2 25 |I-F—=C

I E 2 20 I-H—=E

I G 2 [ I-H-=G
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4 — WAITR Planner — Seam Costs between windows

What a seam is.

A seam prices the hand-off from a pathlet in window t to a pathlet in t+1.

Matrix:

cost of transitioning pathlet i @ t — pathlet j @ t+1

What goes into the cost.

Distance/motion to the next start, feasibility (range/LOS/terrain), policy risk,
turn/hand-off penalties, timing/energy/battery alignment, and any “stay-on-node
discount.

Why it matters.

Seams turn per-window routes into an inter-window fabric; getting them right
makes the DP stitching both fast and stable.

Seam costs: transition t - t+1

pathlet @ t

pathlet @ t+1

Window t — NavGraph G_t

34
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4 — WAITR Planner — Temporal Append via DP

State.
For each time window and each candidate pathlet, keep the best score
so far if the plan ends with that pathlet.

How we update.
To score a pathlet in the next window, we:

1. start from the best score of some pathlet in the current window,
2. subtract the seam cost to move from that current pathlet to the
next one,
3. add the reward of the next pathlet.
We try all predecessors and pick the best combination.

What we remember.
Along with the score, we store which predecessor gave that best
result, so we can reconstruct the full route at the end.

Why this works.

We extend the best partial plan one window at a time, which makes
planning fast and the final routes stable across windows.

Window t

pl reward=2.60

p2 reward=2.30

p3 reward=2.10

Window t+1

ql reward=2.40

g2 reward=2.90

g3 reward=2.00

Window t+2

rl reward=2.20

r2 reward=2.70

r3 reward=2.10

We choose the chain with high total reward and low total seam cost.
Colored boxes = chosen per-window pathlets; bold arrows = chosen seams.
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4 — WAITR Planner — No-Overlap Selection (deconfliction)

+ Constraint (within a window). Chosen pathlets cannot share nodes (and optionally, edges).
« Selection rule (fast default). Flatten — sort by score — accept if disjoint. Skip any candidate that touches already-selected nodes.

+ Exact alternative (when needed). Solve a small ILP / maximum-weight set-packing over pathlets vs. their node sets.

36



4 — WAITR Planner — Full Cycle: Phase 3 - WAITR Planner

Weighted Aggregate Inter-Temporal Reward (WAITR) Planner - Overview

liput N Rev\./a.rd. quht N Piece-wise | Temporal Path | Path Selection | Best Paths
Initialization Pathlets Generator
\, l l | l
Event Count Waypoint o Rank Paths
TED Output as Weights Graph Initialize Path by Reward
| l ,,
Shortest Path Get Node from Get No

Operational Dynamics:
Initial Condition: All nodes initially start scoreless, symbolizing a state with no detected events.
Activation and Scoring: Nodes activate upon detecting events, receiving scores that become part of the pathway calculations.

Score Retention & Update: Active nodes maintain their scores, with potential updates from new events or better paths via neighbors.

Efficient Computation by Pruning: Inactive nodes—those without new events —stay dormant in subsequent processes, focusing efforts on change-prone areas.

up to hop limit

Lookup Table

Overlap Paths

Lookup Table
for pathlets

|

Sum Rewards

l

Append
Frame Paths

Y-AXis

Heatmaps - Time Step: 0

FEEN

¥

0 10 20 30 40 50
X-AXxis
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4 — WAITR Planner — Full Cycle: Overview

Introduction to Dynamic Sensor Placement

« This builds on the ROBUST Network, introducing a process divided into

three phases to determine optimal multi-agent sensor paths.

Phase 1:
Proximal Recurrent Event Partition (PREP) Mapper

N4

Phase 2:

Tensor-Encoded Dynamics (TED) Compiler

Y-AXis

N4

Phase 3:
Weighted Aggregate Intra-Temporal Reward (WAITR) Planner

< Z

Output:

Long-Horizon Temporal Path

Heatmaps - Time Step: 0

X-AXis
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4 — WAITR Planner — Full Cycle: Phase 1 - PREP Mapper

Heatmaps - Time Step: 0

Proximal Recurrent Event Partition (PREP) Mapper - Overview
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4 — WAITR Planner — Full Cycle: Phase 2 - TED Compiler

Temporal Event Dynamics (TED) Predictor - Overview

Waypoint Network

TED Predictor

Sorted Waypoints List
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4 — WAITR Planner — Full Cycle: Phase 3 - WAITR Planner

Weighted Aggregate Inter-Temporal Reward (WAITR) Planner - Overview

liput N Rev\./a.rd. quht N Piece-wise | Temporal Path | Path Selection | Best Paths
Initialization Pathlets Generator
\, l l | l
Event Count Waypoint o Rank Paths
TED Output as Weights Graph Initialize Path by Reward
| l ,,
Shortest Path Get Node from Get No

Operational Dynamics:
Initial Condition: All nodes initially start scoreless, symbolizing a state with no detected events.
Activation and Scoring: Nodes activate upon detecting events, receiving scores that become part of the pathway calculations.

Score Retention & Update: Active nodes maintain their scores, with potential updates from new events or better paths via neighbors.

Efficient Computation by Pruning: Inactive nodes—those without new events —stay dormant in subsequent processes, focusing efforts on change-prone areas.
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Case Study: Multiagent Planning

Weighted Proximal Recurrence Clustering
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Case Study: Multiagent Planning - Methods

ROBUST Network

Cumulative Clusters of Temporal Variability Across All Timeframes

Latitude

Longitude
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Case Study: Multiagent Planning - Methods

TED Predictor in ROBUST Network

Frame 0 - Temperature Difference
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Case Study: Multiagent Planning - Methods

WAITR Planner: Optimizing Sensor Paths

Frame 0 - Temperature Difference
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Case Study: Multiagent Planning - Results

Coverage of WPR Clustering Techniques

Overview:
The Weighted Proximal Recurrence (WPR) method's capacity to cover significant events across the spatiotemporal domain is critical.

This defines the upper bound limit we can achieve in planning strategies due to waypoint placement while limiting spatial space complexity

Key Coverage Insights:

« Top 1 Waypoint provides 8.8% coverage - a single sensor captures nearly a tenth of all significant events.
Top 5 Waypoints enhance coverage to 33.11% - a moderate network of sensors significantly increases event detection.
Top 20 Waypoints achieve a notable 72.7% coverage - showing that a well-planned network can access the vast majority of activities.

Cluster Approach Top1l Top 5 Top 10 Top 20
Aggregated WPR Counts 1256 4726 7308 10378
WPR% (total=14273) 8.8% 33.11% 51.2% 72.7%
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Case Study: Multiagent Planning - Results

Efficiency Comparison of Multiagent Path Planning Strategies

Timestep WAITR Planner (%) Greedy Planner (%)
Frame 0 476 1463

Frame 1 18 116

Frame 2 1236 674

Frame 3 14 5]

Frame 4 305 0

Frame 5 430 0

Frame 6 % 2yl 187

Total (10378) 2811 (27.1%) 2445 (23.56%)
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5 — TED Compiler — Knowledge Graph - Mission Encoder

Inputs

[

Domain Ontologies &

Models

| S—

Real-time Updates
(Forecast Refresh)

Data Plane

A

iRejected Paths /
X Feedback

Control Plane

Knowledge Graph

o

Feasibility I Aggregate /
Policy | Mission Tensor
Llncertainty I
Reward
Coordinated

Mission Plan

—

Selector /
Coordinator

TABLE I: Core KG Schema: Representative Classes (Nouns)

Class

Description

ex:

ex

ex:
ex:Policy
ex:
ex:

ex:

ex:

TimeWindow

:Valuelayer

Constraint

Agent
Event
TensorArtifact

NavGraph

A temporal mterval represeniing a single planning
step, annotated with forecast confidence.

A raw or derived scaentfic data raster (e.g., SST
frontness) for a specific ume window [27], [28].

A spatial restriction, such as a no-go zone or a
soft-penalty area, with a defined geometry.

A named st of weights and rules that declarstively
define an agent’s behaviar and objectives.

An autonomous entity with a designated policy and a
set of physical capabilities.

A discrete, high-value massion objective, such as a
point of iderest 1o be sampled.

A compiled, mission-aware tensor: an outpul of the
Data Plane ($4).

A traversable waypomnt-and-edge graph for a ume
window, generated from a heatmap.

-

Agnostic Path Planner

" Pathlet Candidates
U (All Potential paths for each Agent

across all Time Windows)

owl:Thing
|-— ex:MissionEntity
| |-— ex:Agent
| |-— ex:Policy

|-— ex:Missicn
| ~- ex:Event
| -- ex:SpatiotemporalEntity
| |-— time:TemporalBntity — ex:TimeWindow
| |-— ex:GridSpec
| |-— ex:WorkField

|-— ex:Valuelayer

(mission elements)

| - ex:Constraint
| -- ex:Artifact
|-— ex:TensoriArtifact
| |-— ex:NavGraph
| |=-- ex:Waypoint
| -— ex:TraverseEdge
| == ex:Edgelost
~- prov:Activity
|-— ex:CompilePhi2
- ex:PlanRun

(actions:

(entities with space/time)

(compiled outputs of the KG)

compilation/planning)
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5 — TED Compiler — Knowledge Graph - Mission Encoder

WorkTensor -- The cost of traversing the spatial domain, derived from agent location and environmental cost such as vector field
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5 — TED Compiler — Knowledge Graph - Mission Encoder

EFFORT (km/h residual)
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5 — TED Compiler — Knowledge Graph - Mission Encoder
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5 — TED Compiler — Knowledge Graph - Mission Encoder

Global context: current (red), next (blue), staging (purple) Local patrol (fine grid): least-time route w/ currents
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Conclusions — What we built & why it matters

e Separation of concerns — closed loop.
A planner-agnostic pipeline: TED (compile facts) — PREP (extract candidates) — WAITR (stitch paths) — LOOP, so we only fix what
changed.

e Representation that diagnoses before it plans.
ROBUST provides spatiotemporal, bipartite analytics (coverage, wiring, resilience) to decide where/why to add capacity—independent of
fields or planners.

e Search-space cut without losing value.
PREP reduces pixels/POls to K high-yield candidates per window, giving a feasible NavGraph for mobile or placements for stationary cases.

e Fast, stable routes across time.
WAITR caches local routes (pathlets), prices hand-offs with seams, and uses a DP sweep + no-overlap to produce long-horizon, low-churn
plans

Limitations & scope (be explicit)

e Forecast sensitivity: Route quality depends on reward/effort estimates; we mitigate with risk-aware seams but full uncertainty propagation is future work.
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Conclusions: Related Publications

"A Stochastic Geo-spatiotemporal Bipartite Network to Optimize GCOOS Sensor Placement Strategies™
2nd Workshop on Knowledge Graphs and Big Data, In Conjunction with IEEE Big Data 2022

"STROOBnNet Optimization via GPU-Accelerated Proximal Recurrence Strategies"
3rd Workshop on Knowledge Graphs and Big Data, In Conjunction with IEEE Big Data 2023

"Knowledge Graph-Based Multi-Agent Path Planning in Dynamic Environments using WAITR"
4th Workshop on Knowledge Graphs and Big Data, In Conjunction with IEEE Big Data 2024
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