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Overview -- (Talk Breakdown)
1. Big Picture → Motivation & Problem Domain 

• Cycle:   TED -- PREP -- TED -- WAITR

2. ROBUST Networks (Overview)
• Math terms and Analysis 

3. PREP (Mapper): per-window spatial pruning → NavGraph
• Heatmap Abstraction
• Proximal Recurrent

4. WAITR (Planner): spatiotemporal optimization → stitched long-horizon route (MPC repair)
• Pathlets

5. TED (Mission Compiler): policy-to-tensor compilation & stochastic updates

• Contract (Interfaces): The Mission Tensor Producer (TED) ↔  Consumers (PREP, WAITR)

6. Q&A
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1 -- The Big Picture
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Across many domains, teams of agents must coordinate & act while the world keeps changing.

● Dynamics: goals shift; risks/closures appear; conditions evolve.
● Knowledge decays: observations age; confidence drops over time.
● Constraints: access rules; safety policies; limited time/energy/budget.
● Coordination: multiple robotic/human agents must avoid conflict and share work.
● Consequence: static plans go stale; full replans are costly and brittle.

The Problem

5Where? - Imperfect Spatial knowledge When?  - Imperfect Temporal knowledge



Introduction:  Background

Spatiotemporal Data Challenges and ROBUST Networks

The Challenge: 
Maximize Observational Coverage in Spatiotemporal Environments 

The Need:
A framework to 'choreograph' data acquisition of dynamic temporal events.

This Research: 
Focus on observer positioning that supports both scalability, and adaptability.
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Introduction:  Research Problem
Main Problem Statement:

Bipartite Networks: 
Networks comprising two distinct classes of nodes, with links only between 
nodes of different classes.

Spatiotemporal Dimensions: 
These networks evolve over time and space, adding complexity to their 
structure and dynamics.

What Makes This Challenging?
• Variability: The dynamic nature of the networks, with nodes and links 

changing over time, stochastically.
• Complexity: Introducing both spatial & temporal dimensions means 

traditional methods may not be directly applicable.
• Optimality: Determining what "optimal" means in the context of these 

networks, given the numerous metrics & considerations.

Why It Matters:
Optimizing these networks can lead to more efficient resource use, faster 
response times, and better outcomes in applied scenarios.
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Produce feasible, high-value, explainable routes/assignments for one or more agents over a time horizon, 
continuously adapting as conditions and policies change.

The Goal (what success looks like)
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● Decision: 
routes/assignments per agent across windows.

● Objective: 
maximize mission value subject to cost/feasibility 

○ (time, energy, risk, access)

● Outputs: 
long-horizon routes 
+ rationale (why-trace) 
+ fast, incremental updates (low churn).



Introduction:  Research Hypotheses
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H1: Analysis & Insight of Observational Capabilities: 
● ROBUST networks proposes a novel set of spatiotemporal graph analysis tools, with coverage, robustness measures, and centrality 

distribution analysis.

H2: Optimized Observer Node Placement: 
● ROBUST networks will achieve an optimal balance between minimizing node insertions and maximizing event capture, demonstrating 

superior resource allocation that will outperform conventional models ( k-means, dbscan, LP, etc.).

H3: Scalable & Rapid Execution in Support of Real-Time Decision Making: 
● ROBUST networks are hypothesized to integrate the efficiency of vectorized computations and GPU-accelerated techniques, achieving 

the rapid processing speeds, while simultaneously delivering high accuracy as compared to much slower linear programming 
approaches.  



The System at a Glance (closed loop)
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2 — ROBUST Networks — Motivation

The Need for Spatiotemporal Bipartite Network Models

The Missing Link: 
We lack models that integrate both spatiotemporal interactions AND the distinct 
relationships within bipartite networks.

Consequences:
• Missed insights into complex systems
• Inability to optimize for specific goals

The Opportunity: 
By extending network theory to merge these concepts, we can unlock greater 
accuracy and strategic control.
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2 — ROBUST Networks — Representation & Analytics

12

Definition:  A spatiotemporal, bipartite model of dynamic observers ↔ dynamic observables with metrics for coverage, wiring, and resilience.

• Ranged observers (myopia): View limits (range/FOV/LOS) are a defining property; they determine which observables are even feasible per 
window.

• Bipartite core: Cleanly separates who senses from what is sensed to reason about coverage and opportunity.

• Unipartite projection: Project to observable–observable links to cluster what needs sensing and identify high-value regions.

• Spatiotemporal windows: Evolve structure as { Gt }; attributes and feasibility change with time.
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2 — ROBUST Networks — Mathematical Formulation
Extending Spatiotemporal Networks to ROBUST Networks

Mathematical Formulation:
Grobust = ( V, E, P, T, AV , AE )

Sets and Spatial Positioning & Temporal Behaviors
● Spatial Positioning ( P ):     Maps node locations at timestep.
● Temporal Domain ( T ):       Represents the time dimension.

Node and Edge Attributes
● Node Attributes ( AV ):        Time-variant characteristics of nodes.
● Edge Attributes ( AE ):        Time-variant characteristics of edges.

Observed vs. Unobserved
● VE

obs  Observable nodes within the myopic range.
● VE

unobs Observable nodes outside the myopic range.

• V: Set of all nodes, divided into:
• VO Observer Nodes, Entities capable of observing events.
• VE Observable Nodes,  Events/ phenomena that is observable.

• E: Set of edges between observer and observable nodes.



Novel Measures for ROBUST Network Analysis
• Six spatial metrics that turn structure into decisions (seed, add links, split spans, harden nodes).
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2 — ROBUST Networks — Measures & Analysis



Myopic Degree — Local Neighborhood Density
• Definition: Measures the connectivity of a node within a specific spatial range, focusing 

on the immediate neighborhood density.

• Purpose: Quantifies a node's connections within a defined proximity, highlighting its 
interaction with nearby nodes.

Mathematical Representation
• The Myopic Degree or Spatial Degree of a node vi is given by:

 Spatial Degree(vi ) = | {vj ∈ V : d(P(vi ) , P(vj )) ≤  𝜽  } | 

where 𝜽 represents a threshold distance for considering an edge to exist.

Why it matters
• Finds hotspots vs deserts at the current window.

Use it to decide:
• Dense ⇒ seed medoids / anchor patrols. 
• Sparse ⇒ insert/retask observers..
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2 — ROBUST Networks — Spatial Metrics for Node Analysis



Spatial Closeness Centrality — Global Reach
• Definition: A measure assessing a node's centrality within a network, based on its spatial 

distance to all other nodes.

• Purpose: Provides a global perspective on a node's position and influence by considering 
its average spatial distance from the entire network.

Mathematical Formulation
• The Spatial Closeness Centrality of a node vi is defined as:

where d( P(vi), P(vj) ) represents the spatial distance between nodes vi and vj.

Why it matters
• Picks globally near sites that minimize average travel to everything.

Use it to decide:
• Choose cluster medoids/relays; deprioritize peripheral anchors.
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2 — ROBUST Networks — Spatial Metrics for Node Analysis



Spatial Edge Density — Constrained Wiring
• Definition: Evaluates the network's closeness to maximal connectivity within spatial 

constraints, focusing on the overall edge concentration.

• Key Aspect: Takes into account the spatial arrangement and limitations such as physical 
distance and geographical barriers, offering a global connectivity perspective.

Mathematical Formulation
• This measure adapts traditional edge density by considering the maximum feasible edges 

within spatial limitations, rather than the theoretical maximum in a complete graph.  

Why it matters
• Reveals if we’re under-wired given feasibility (range/LOS/barriers)

Use it to decide:
• Raise candidate K or add links where density is low
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2 — ROBUST Networks — Edge-Based Spatial Metrics



Edge Length Proportion — Long-Edge Burden
• Definition: A spatial metric quantifying the proportion of an individual edge's 

length relative to the total length of all edges in a network.

• Purpose: Provides insights into the significance of a specific edge within the 
overall network structure, useful for infrastructure planning and spatial resource 
optimization.

Mathematical Representation
• The Edge Length Proportion of edge (e) is calculated as:

•

This ratio evaluates an edge's scale of contribution to the network's total length, 
highlighting its relative importance.
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2 — ROBUST Networks — Edge-Based Spatial Metrics

Why it matters
• Flags fragile, costly spans dominating movement.

Use it to decide:
• Cap edge length & insert intermediates to split long hops.



Spatial Clustering Coefficient — Compactness
• Purpose: Adapts the traditional clustering coefficient for spatial networks, emphasizing the 

importance of both the number and compactness of closed triplets.

• Insight: Offers a measure of the tendency for nodes to form tightly-knit, geographically 
proximal communities, enhancing our understanding of spatial network dynamics.

Mathematical Representation

Why it matters
• Quantifies tight, efficient neighborhoods (closed triplets within a radius)

Use it to decide:
• Prefer compact clusters for stable local ops; avoid diffuse ones as anchors.
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2 — ROBUST Networks — Graph-Based Spatial Metrics



Spatial Resilience — Failure Impact
• Core Concept: Goes beyond edge connectivity, focusing on preserving the integrity of spatial 

segments under the control or influence of nodes.

• Purpose: Measures network robustness in terms of spatial coverage and influence.

Mathematical Representation
  

Why it matters
• Measures coverage lost when a node fails (segment integrity)

Use it to decide:
• Harden/duplicate high-criticality nodes; pre-plan alternates.
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2 — ROBUST Networks — Graph-Based Spatial Metrics



3 — PREP Mapper — Proximal Recurrence Extract & Project
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• Reality: Missions live in continuous space; value, risk, and feasibility change over time.

• Without PREP: Pixels/raw POIs → huge search, noisy picks, slow replans.

• PREP’s job: Extract the top-K candidate locations per window using (PR/WPR).

• Then:

• Stationary case: place observers at those K locations.

• Mobile case: use those locations to build a sparse, feasible NavGraph for planning.



3 — PREP Mapper — Heatmap Abstractions 
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• We use a field/tensor to encode Priority (not just “heat”).

• The field prioritizes the spatiotemporal operational space for a given context.

• The context is swappable (policy/data); the planner contract stays the same.

• Same PREP logic works for any ROI (crisis, utility, uncertainty, …).

• A dynamic field simply means cell values change over time.

• A dynamic field means that a cell may account for multiple events over time.



Algorithm Overview

3 — PREP Mapper — Bipartite Dynamics
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Output
   - ranked observers
   - observed points

Event
Classifier

Centrality
Ranking

Link
Generation

Myopic
Filtering

Input
-  Observer Nodes
-  Event Nodes

Analyzing Efficacy & Coverage of Observers

Goal: 
To identify coverage areas, detect gaps, & pinpoint observer placement weaknesses.



 Px ={ x1 , x2 , … , xm }, 
Py ={ y1 , y2 , … , ym } 

ROBUST Graphs and Proximal Recurrence
Objective:

• Network Analysis: Employ graph theory to analyze the distribution of resources 
and to identify key points for optimal observation within the network.

Approach (ROBUST):
Conceptualize the placement problem within the ROBUST framework, focusing on 
network characteristics derived from graph theory.

Step-by-Step Approach:

1. Event Point Extraction: Isolate unobserved event points from the ROBUST 
network, which represent potential areas requiring coverage. expected: ( O(n) )

2. Link Generation: Calculate the connections between unobserved points within the 
observer's range, constructing a graph where points are nodes and links indicate 
potential coverage. expected: ( O(m2) )

3. Degree-Based Sorting: Organize event points in descending order of their 
degree—i.e., the number of links to other points—prioritizing points with the highest 
connectivity for resource placement. expected: ( O(m log m) )

3 — PREP Mapper —  Unipartite Dynamics
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Dc = { Ci  ∈ Csorted  : Ci  is maximal dense}

C = {(ei , ej ) : ei , ej ∈ UE, i ≠ j}



Proximal Recurrence Clustering 

Proximal Recurrence (PR)
• Objective: Maximize monitoring efficiency by identifying areas with a high 

concentration of unobserved events.

• Steps:
1. Count Events Within Range: Assess each unobserved event to count 

nearby events within sensor range, including both existing and predicted 
future events.

2. Identify Densest Cluster: Find the area with the highest density of 
events, using the counts from step 1 as a guide.

3. Select for Node Insertion: Choose the identified densest cluster as the 
priority location for deploying a new sensor node.

3 — PREP Mapper — Unipartite Dynamics
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Unobserved Points: Blue dots are locations & circle ts view range.

Interpretation of Color Intensities
• Black: Not monitored.
• Dark Red: Low overlap and coverage
• Red: Moderate overlap and coverage
• Yellow: High overlap and coverage.
• White: Optimal due to highest overlap.



Maximizing Coverage with Optimal Placements
Problem:

• Multiagent Temporal Pathing of  Ranged Observational Units

Algorithm Overview

3 — PREP Mapper — Unipartite Dynamics
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Iterative Optimization: 
Remove covered points from consideration, preventing redundancy.

Centroid Identification: 
Employ an iterative process to select optimal resource locations, enhancing 
coverage efficiency.

Kernel Convolution: 
Apply a circular kernel to the heatmap to map out potential coverage zones.

Heatmap Generation: 
Create a matrix representation of point density to simplify the problem space.



Heatmap Creation for Point Density Matrix
Point Density Heatmap
Heatmaps, represented as matrices of spatial point densities, dramatically 
reduce the O(n2) complexity typically associated with point-to-point evaluation.

Binning as Spatial Partitioning
Through binning, points are partitioned into discrete spatial indices based on 
their coordinates, creating a higher-level density matrix. Each cell within this 
matrix represents the aggregate density of points.

Towards Practical Application
The implementation leverages computational accelerations like CUDA to handle 
large-scale datasets effectively. This ensures the algorithm's scalability and 
enhances its efficiency.

3 — PREP Mapper — Unipartite Dynamics
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Kernel Convolution for Coverage Mapping
Kernel Convolution:
Apply a predefined shape (e.g., a circle) that represents the area each point 
covers. The radius of this shape correlates to the coverage area.

Convolution Process:
The algorithm overlays this kernel shape onto the heatmap matrix. Convolution 
identifies regions with high densities of points under the kernel area, indicating 
high potential for coverage.

Identifying Coverage Areas:
By scanning across the heatmap, convolution highlights areas where the 
cumulative density—under the kernel's footprint—reaches a maximum. These 
areas signify optimal locations for resource placement to maximize coverage.

3 — PREP Mapper — Unipartite Dynamics
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Identifying Optimal Placements
Process Overview:
The algorithm seeks out the maximum values in the coverage map, 
which result from the convolution process, as potential centroids.

Iterative Selection:
• Initial Identification: Locate the highest density area in the 

coverage map as the first centroid.

• Coverage Optimization: After selecting a centroid, the algorithm 
"zeros out" the points within its coverage radius on the heatmap. 
This step prevents double counting of covered points in 
subsequent iterations.

• Repeat Until Completion: Continue this process, iteratively 
identifying and zeroing out coverage areas, until the maximum 
predetermined number of centroids are selected or no significant 
points remain uncovered.

Maximizing Coverage:
Through this iterative approach, the algorithm efficiently distributes 
centroids to areas of highest point density, ensuring optimal coverage 
across the entire dataset.

3 — PREP Mapper — Unipartite Dynamics
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3 — PREP Mapper —  Output - Nav Graph
Proximal Recurrent Event Partition (PREP)  Mapper - Overview
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● Goal: optimize long-horizon routes over time windows with no-overlap between selected paths.

● Inputs: per-window Nav Graphs from PREP + seam costs.

● Output: stitched, deconflicted multi-agent plans over (t=1..T).

4 — WAITR Planner — Motivation
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4 — WAITR Planner —  Observer Nodes - Sampling Behaviors
Observer Movement: Adapting to a Dynamic World

Types of Observers
• Static: Fixed location, ideal for consistent monitoring of critical areas.
• Dynamic: Capable of movement, enhancing adaptability.

• Discrete: Move at intervals or in response to triggers.
• Continuous: Can move in real-time for tracking and rapid adjustment.

Environment Matters
• Obstacle Avoidance: Navigating through physical barriers.
• Terrain Adaptation: Compatibility with various environments.
• Energy Management: Efficient use of power.

Asymmetric Movement: 
ROBUST may leverage a mix of observer types for a balanced and effective approach.



Build pathlets 
Precompute shortest simple paths with ≤ Hmax H_{\max}Hmax  hops between candidate nodes in 
GtG_tGt . Each path = a pathlet.

Store in the Lookup Table (LUT). 
For each ordered pair keep one best entry: id, start→end, hops, cost/length, nodes.

Why this step. 

Converts into a cache of reusable local routes, making temporal stitching fast and stable.
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4 — WAITR Planner —  Pathlets & the Lookup Table
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What a seam is. 

A seam prices the hand-off from a pathlet in window t to a pathlet in t+1.

Matrix: 

cost of transitioning pathlet i @ t → pathlet j @ t+1

What goes into the cost. 

Distance/motion to the next start, feasibility (range/LOS/terrain), policy risk, 
turn/hand-off penalties, timing/energy/battery alignment, and any “stay-on-node” 
discount.

Why it matters. 

Seams turn per-window routes into an inter-window fabric; getting them right 
makes the DP stitching both fast and stable.

4 — WAITR Planner —  Seam Costs between windows
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State.  
For each time window and each candidate pathlet, keep the best score 
so far if the plan ends with that pathlet.

How we update.  
To score a pathlet in the next window, we:

1. start from the best score of some pathlet in the current window,
2. subtract the seam cost to move from that current pathlet to the 

next one,
3. add the reward of the next pathlet.

 We try all predecessors and pick the best combination.

What we remember. 
Along with the score, we store which predecessor gave that best 
result, so we can reconstruct the full route at the end.

Why this works. 

We extend the best partial plan one window at a time, which makes 
planning fast and the final routes stable across windows.

4 — WAITR Planner —  Temporal Append via DP
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• Constraint (within a window). Chosen pathlets cannot share nodes (and optionally, edges).

• Selection rule (fast default). Flatten → sort by score → accept if disjoint. Skip any candidate that touches already-selected nodes.

• Exact alternative (when needed). Solve a small ILP / maximum-weight set-packing over pathlets vs. their node sets.

4 — WAITR Planner —  No-Overlap Selection (deconfliction)



Weighted Aggregate Inter-Temporal Reward (WAITR) Planner - Overview

4 — WAITR Planner — Full Cycle:   Phase 3 - WAITR Planner
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Operational Dynamics:
● Initial Condition: All nodes initially start scoreless, symbolizing a state with no detected events.
● Activation and Scoring: Nodes activate upon detecting events, receiving scores that become part of the pathway calculations.
● Score Retention & Update: Active nodes maintain their scores, with potential updates from new events or better paths via neighbors.
● Efficient Computation by Pruning: Inactive nodes—those without new events —stay dormant in subsequent processes, focusing efforts on change-prone areas.



Introduction to Dynamic Sensor Placement
• This builds on the ROBUST Network, introducing a process divided into 

three phases to determine optimal multi-agent sensor paths.

Output: 
Long-Horizon Temporal Path  

4 — WAITR Planner — Full Cycle:  Overview
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Phase 3: 
Weighted Aggregate Intra-Temporal Reward (WAITR) Planner

Phase 2: 
Tensor-Encoded Dynamics (TED) Compiler

Phase 1: 
Proximal Recurrent Event Partition (PREP) Mapper



39

4 — WAITR Planner — Full Cycle:   Phase 1 - PREP Mapper
Proximal Recurrent Event Partition (PREP)  Mapper - Overview



Temporal Event Dynamics (TED) Predictor - Overview

4 — WAITR Planner — Full Cycle:   Phase 2 - TED Compiler
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Weighted Aggregate Inter-Temporal Reward (WAITR) Planner - Overview

4 — WAITR Planner — Full Cycle:   Phase 3 - WAITR Planner
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Operational Dynamics:
● Initial Condition: All nodes initially start scoreless, symbolizing a state with no detected events.
● Activation and Scoring: Nodes activate upon detecting events, receiving scores that become part of the pathway calculations.
● Score Retention & Update: Active nodes maintain their scores, with potential updates from new events or better paths via neighbors.
● Efficient Computation by Pruning: Inactive nodes—those without new events —stay dormant in subsequent processes, focusing efforts on change-prone areas.



Weighted Proximal Recurrence Clustering
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Case Study: Multiagent Planning



ROBUST Network

43

Case Study: Multiagent Planning - Methods



TED Predictor in ROBUST Network
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Case Study: Multiagent Planning - Methods



WAITR Planner: Optimizing Sensor Paths
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Case Study: Multiagent Planning - Methods



Coverage of WPR Clustering Techniques

Overview:
• The Weighted Proximal Recurrence (WPR) method's capacity to cover significant events across the spatiotemporal domain is critical.
• This defines the upper bound limit we can achieve in planning strategies due to waypoint placement while limiting spatial space complexity

Key Coverage Insights:
• Top 1 Waypoint provides 8.8% coverage - a single sensor captures nearly a tenth of all significant events.
• Top 5 Waypoints enhance coverage to 33.11% - a moderate network of sensors significantly increases event detection.
• Top 20 Waypoints achieve a notable 72.7% coverage - showing that a well-planned network can access the vast majority of activities.
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Case Study: Multiagent Planning - Results



Efficiency Comparison of Multiagent Path Planning Strategies
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Case Study: Multiagent Planning - Results
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5 — TED Compiler —  Knowledge Graph - Mission Encoder
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5 — TED Compiler —  Knowledge Graph - Mission Encoder
WorkTensor -- The cost of traversing the spatial domain, derived from agent location and environmental cost such as vector field  



50

5 — TED Compiler —  Knowledge Graph - Mission Encoder
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5 — TED Compiler —  Knowledge Graph - Mission Encoder
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5 — TED Compiler —  Knowledge Graph - Mission Encoder



Conclusions — What we built & why it matters
● Separation of concerns → closed loop.

 A planner-agnostic pipeline: TED (compile facts) → PREP (extract candidates) → WAITR (stitch paths) → LOOP, so we only fix what 
changed.

● Representation that diagnoses before it plans.
 ROBUST provides spatiotemporal, bipartite analytics (coverage, wiring, resilience) to decide where/why to add capacity—independent of 
fields or planners.

● Search-space cut without losing value.
 PREP reduces pixels/POIs to K high-yield candidates per window, giving a feasible NavGraph for mobile or placements for stationary cases.

● Fast, stable routes across time.
 WAITR caches local routes (pathlets), prices hand-offs with seams, and uses a DP sweep + no-overlap to produce long-horizon, low-churn 
plans

Limitations & scope (be explicit)

● Forecast sensitivity: Route quality depends on reward/effort estimates; we mitigate with risk-aware seams but full uncertainty propagation is future work.
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"A Stochastic Geo-spatiotemporal Bipartite Network to Optimize GCOOS Sensor Placement Strategies"
2nd Workshop on Knowledge Graphs and Big Data, In Conjunction with IEEE Big Data 2022

"STROOBnet Optimization via GPU-Accelerated Proximal Recurrence Strategies"
3rd Workshop on Knowledge Graphs and Big Data, In Conjunction with IEEE Big Data 2023

"Knowledge Graph-Based Multi-Agent Path Planning in Dynamic Environments using WAITR"
4th Workshop on Knowledge Graphs and Big Data, In Conjunction with IEEE Big Data 2024
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Conclusions: Related Publications


