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Introduction
Device acquisition identification

Threat of knowledge life cycle

Digital speech content can be imperceptibly altered by malicious, even
amateur, users employing a variety of low-cost audio editing software.

This threat permeates a wide variety of fields, such as intellectual
property, intelligence gathering, forensics, news reporting, etc.

Theories and tools to combat this threat in the digital speech
forensics are still in their infancy.

A first step to combat this threat is to extract forensic evidence about
the mechanism involved in the generation of the speech recording.
That is, to identify the acquisition device.

Other problems in digital speech forensics are: codec identification,
authentication of speakers’ environment, identification of the device
power source (i.e., electric network frequency), identification of the
network traversed.
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Introduction
Objectives-Assumptions

Intrinsic traces

Suppose that the device along with its associated signal processing
chain leaves behind intrinsic traces in the speech signal.

Various devices (e.g., telephone handsets, mobile phones) do not have
exactly the same frequency response due to the tolerance in the
nominal values of the electronic components and the different designs
employed by the various manufacturers.

A blind-passive approach is exploited, as opposed to active embedding
of watermarks or having access to input-output pairs.
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Mobile Phone Identification
Intrinsic traces based on MFCCs

Mel frequency cepstral coefficients (MFCCs) are extracted from any
recorded speech signal at a frame level.

The MFCC calculation employs frames of duration 20 ms with a hop
size of 10 ms, and a 42-band filter bank. The correlation between the
frequency bands is reduced by applying the discrete cosine transform
to the log energies of the bands.

Gaussian Mixture Models (GMMs) with diagonal covariance matrices
are used in order to model the probability density function of the
MFCC vectors.

A Gaussian supervector (GSV) derived by concatenating the mean
vectors and the main diagonals of the covariance matrices is used as a
template for each device.
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Mobile Phone Identification
MOBIPHONE database

The MOBIPHONE database contains 21 mobile phones of various
models from 7 different brands.

12 male and another 12 female speakers were randomly chosen from
TIMIT1.

Each speaker reads 10 sentences approximately 3s long.

The first 2 sentences are the same for every speaker, but the rest are
different.

1
J. Garofolo, “Getting started with the DARPA TIMIT CD-ROM: An acoustic phonetic continuous speech database,”

National Inst. Standards and Technology (NIST), Tech. Rep., 1988.
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Mobile Phone Identification
MOBIPHONE database

Sampling frequency: 16 kHz.

The recordings were made in a silent, controlled environment with the
same recording equipment.

The 10 utterances per speaker were concatenated in a single 30s long
recording, yielding 504 recordings all together.

MOBIPHONE is publicly available2.

A second version of MOBIPHONE, where each recording is split into
its constituent utterances is also available3.

2
https://www.dropbox.com/sh/9n7fy7moi825bgk/WFLBKxUitV

3
https://tinyurl.com/4kmb6fj7.
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Mobile Phone Identification
MOBIPHONE database

Table 1: Brands and models of the mobile phones in the MOBIPHONE and their class names.

Class Name Brand and Model Class Name Brand and Model

HTC1 HTC desire c APPLE1 iPhone5

HTC2 HTC sensation xe S1 Samsung E2121B

LG1 LG GS290 S2 Samsung E2600

LG2 LG L3 S3 Samsung GT-I8190 mini

LG3 LG Optimus L5 S4 Samsung GT-N7100 ( Note2)

LG4 LG Optimus L9 S5 Samsung Galaxy GT-I9100 s2

N1 Nokia 5530 S6 Samsung Galaxy Nexus S

N2 Nokia C5 S7 Samsung e1230

N3 Nokia N70 S8 Samsung s5830i

SE1 Sony Ericsson c902 V1 Vodafone joy 845

SE2 Sony Ericsson c510i
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Mobile Phone Identification
Power spectrum

Figure 1: Power spectrum of the same speech signal recorded by different mobile phones.
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Mobile Phone Identification
Histograms of the 5th MFCC

Figure 2: Histogram of the 5th MFCC when the same speech signal is recorded by different
mobile phones.
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Mobile Phone Identification
Experimental Results

The first set of experiments employs GSVs without GMM-Universal
Background Model (UBM) and three commonly used classifiers, such
as the Support Vector Machines (SVMs) with different kernels, a
Radial Basis Function (RBF)-NN, and a Multilayer Perceptron
(MLP)4.

The second set of experiments employs sketches of GSVs with
GMM-UBM and three classifiers, namely, the SRC, the linear SVMs,
and the Nearest Neighbor (NN) classifier5.

4
C. Kotropoulos and S. Samaras, “Mobile phone brand and model identification using recorded speech signals,” in Proc.

19th Int. Conf. Digital Signal Processing, pp. 586-591, August 20-23, 2014.
5

C. Kotropoulos, “Source phone identification using sketches of features,” IET Biometrics, vol. 4, no. 2, pp. 75-83, June
2014.
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Mobile Phone Identification
Experimental Results

Table 2: Identification accuracies (in %) achieved by the RBF-NN for GSVs including also the
variances.

Components σ Accuracy

1 0.1 97.6

3 5 73.8

6 5 74.2
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Mobile Phone Identification
Experimental Results

Table 3: Identification accuracies (in %) achieved by the MLP for both types of GSVs (M stands
for the GSVs formed by the mean vectors only and MC stands for the GSVs, which include the
variances as well).

Components GSV
Type

Momentum Learning
Rate

Hidden
Neurons

Epochs Accuracy

1 M 0.9 0.1 150 250 96

2 MC 0.9 0.1 150 250 96.4
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Telephone Handset Identification
Lincoln-Labs handset database (LLHDB)

A subset of LHHDB6 was used that consisted of speech recordings
from 53 speakers (24 males and 29 females) acquired by 8 landline
telephone handsets.

4 of telephone handsets are carbon-button (CB1-CB4) and 4 are
electrect (EL1-EL4).

Evaluation Protocol: stratified 2-fold cross-validation.

Baseline Classifiers: Linear SVM, NN with cosine similarity measure.

6
D. A. Reynolds, “HTIMIT and LLHDB: speech corpora for the study of handset transducer effects,” in Proc. 1997 IEEE

Int. Conf. Acoustics, Speech, and Signal Processing, Munich, Germany, 1997, vol. 2, pp. 1535–1538.
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Telephone Handset Identification
Average log spectrograms

The spectrogram of each recorded speech signal is calculated by
employing frames of duration 64 ms with a hop size of 32 ms.

The logarithm of the spectrogram is calculated and averaged along
the time axis, yielding a 2048-dimensional average log spectrogram.

Figure 3: Average log spectrogram of a speech utterance recorded by 8 different telephone handsets in LLHDB.

C. Kotropoulos Multimedia Forensics March 9, 2025 16 / 105



Telephone Handset Identification
Sketches of spectral features (SSFs)

The spectrogram of each recorded speech signal is calculated by
employing frames of duration 64 ms with a hop size of 32 ms.

The logarithm of the spectrogram is calculated and averaged along
the time axis, yielding a 2048-dimensional average spectrogram.

Let ZZZ ∈ R2048×n be the data matrix containing the average log
spectrograms of n recordings. The dimensionality of the average log
spectrogram is reduced to d < 2048 by premultiplying ZZZ with a
projection matrix RRR ∈ Rd×2048 yielding XXX = RRR ZZZ .

The elements of RRR, Ri ,j are taken as independent identically
distributed (i.i.d.) random variables sampled from a p-stable
distribution.

The resulting d-dimensional SSFs are used for acquisition device
representation.
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Telephone Handset Identification
Sketches of spectral features (SSFs)

Figure 4: Unsupervised feature selection: Sketches of Spectral Features.
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Telephone Handset Identification
p-stable distributions

If we sample Ri ,j from a p-stable distribution, for any two mean
spectrograms (say the first two column of Z) the differences
Xi ,1 − Xi ,2 =

∑2048
j=1 Ri ,j (Zj ,1 − Zj ,2), i = 1, 2, . . . , d , are also i.i.d.

samples of a p-stable distribution.

The projection can be used to recover an approximate value of the `p
norm of the original spectrograms computed in a space of reduced
dimensions.

The most well-known stable distribution is the Gaussian distribution
of zero mean and unit standard deviation, which is 2-stable. It was
used to extract the Random Spectral Features (RSFs).

The class of stable distributions is much wider, including heavy-tailed
distributions as well7.
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Telephone Handset Identification
p-stable distributions

For p = 0.5, one obtains the Levy distribution. The Cauchy
distribution, f (r) = 1

π
1

1+r2 , is 1-stable. The aforementioned three
distributions are the only cases for which closed form expressions of
the probability density functions exist8.

7
P. Indyk, “Stable distributions, pseudorandom generators, embeddings, and data stream computation,” Journal of the

ACM, vol. 53, no. 3, pp. 307–323, 2006.
8

G. R. Arce, Nonlinear Signal Processing, J. Wiley & Sons, Hoboken, NJ, USA, 2005.
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Telephone Handset Identification
p-stable distributions

Figure 5: p-stable probability density functions.

In general for p ∈ (0, 2], Ri ,j can be generated by9

Ri ,j =
sin(pθ)

cos1/p θ

(
cos(θ(1− p))

− ln u

) 1−p
p

where θ is uniform on [−π/2, π/2] and u is uniform on [0, 1].
9

J. P. Nolan, Stable Distributions, Birkhauser, 2002.
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Telephone Handset Identification
Labeled spectral features (LSF)

Let XXX t ∈ R2048×Nt be the training data matrix, containing in its
columns the average log spectrograms extracted from Nt speech
signals recorded by using acquisition devices from K classes.

Let LLLt ∈ {0, 1}K×Nt be the label indicator matrix, where the kth
component of the nth column of LLLt , llln, is 1 if the nth device belongs
to class k ∈ K = {1, 2, . . . ,K}.
Features highly dependent on the labels can be obtained by seeking a
linear mapping MMM ∈ RK×2048 such that the space of the training
average log spectrograms is mapped onto the label space, i.e.,
LLLt = MMM XXX t .
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Telephone Handset Identification
Labeled spectral features (LSF)

MMM is found by solving the following ridge regression problem:

argmin
MMM
‖LLLt −MMM XXX t‖2

F + λ‖MMM‖2
F , (1)

where λ is a regularization parameter (λ = 0.5 was used in the
experiments) and ‖.‖F denotes the Frobenius norm.

The unique closed form solution of (1) is

MMM = LLLt XXX
>
t

(
XXX t XXX

>
t + λ III

)−1
. (2)

In the test phase, by premultiplying any average log spectrogram by
MMM, the K -dimensional vector of the LSFs is obtained.
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Telephone Handset Identification
Sparse-representation based classifier

Let XXX = [XXX 1|XXX 2| . . . |XXXK ] ∈ Rd×n be an overcomplete dictionary
formed by concatenating n intrinsic traces (e.g., average MFCCs,
RSFs, SSFs, LSFs), which stem from K acquisition devices10.

We assume a vector of test intrinsic traces yyy ∈ Rd comes from the

ith device. Let ccc =
[
000>| . . . |000>| ccc>i |000>| . . . |000>

]>
be the n × 1

augmented coefficient vector, whose elements are zero except those
associated with the ith device. yyy is expressed as a linear combination
of the atoms that are associated to the ith device, i.e., yyy = XXX ccc.
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Telephone Handset Identification
Sparse-representation based classifier

Since the device ID of test vector yyy is unknown, we predict it by
seeking the sparsest solution to the linear system of equations
yyy = XXX ccc . i.e.,

ccc∗ = arg min
ccc
‖ccc‖1 subject to XXX ccc = yyy , (3)

where ‖.‖1 denotes the `1 norm of a vector.

yyy is classified to the device class that minimizes the residual
ri (yyy) = ‖yyy −XXX δi (ccc)‖2, where δi (ccc) ∈ Rn is a vector, whose nonzero
entries are associated to the ith device only.
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Telephone Handset Identification
Sparse-representation based classifier

ccc

yyy = XXX•

Figure 6: The test vector of RSFs yyy has been extracted by a carbon-button telephone handset
with the ID: CB1. (a) Sparse coefficients ccc. The non-zero entries of ccc are mainly associated
with RSFs extracted from speech utterances recorded with the CB1. (b) The residuals ri (yyy) of
the RSFs. The smallest residual value reveals the identity of the telephone handset (i.e., CB1).

10
J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE

Trans.Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.
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Telephone Handset Identification
Experiments on LHHDB

Table 4: Best telephone handset identification accuracies achieved by the SSFs and the MFCCs,
when the SRC, the linear SVM, and the NN are employed.

Features Feature dimension Classifier Accuracy (%)
SSFs (Cauchy) 800 SRC 94.72
SSFs (Cauchy) 800 SVM 94.66

SSFs (Cauchy) 775 NN 83.78

SSFs (Gaussian) 700 SRC 94.99
SSFs (Gaussian) 800 SVM 94.66

SSFs (Gaussian) 850 NN 85.08

LSFs 8 SRC 97.14
LSFs 8 SVM 97.58
LSFs 8 NN 96.52

MFCCs 23 SRC 89.79

MFCCs 23 SVM 87.35

MFCCs 23 NN 81.95

MFCC-based Gaussian supervector 11 N/A SVM 93.20

11
D. Garcia-Romero and C. Y. Espy-Wilson,“Automatic acquisition device identification from speech recordings,”in Proc.

2010 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Dallas, TX, USA, pp. 1806-1809, 2010.
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Revisiting Mobile Phone Identification
Second Set of Experiments on MOBIPHONE

Table 5: Best mobile phone identification accuracies achieved by the SRC, the linear SVM, and
the NN for various sketches of features.

Features Classifier Accuracy (%)
GSVs using a GMM-UBM trained on SRC 100
the full training subset of TIMIT for 64 or 128 SVM 100
GMM components NN 100

GSVs using a GMM-UBM trained on SRC 100
the training subset DR2 of TIMIT for 64 GMM SVM 100
components NN 99.60

GSVs using a GMM-UBM trained on SRC 100
the training subset DR2 of TIMIT for 128 GMM SVM 100
components NN 98.41
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Revisiting Mobile Phone Identification
Second Set of Experiments on MOBIPHONE

Table 5: Best mobile phone identification accuracies achieved by the SRC, the linear SVM, and
the NN for various sketches of features (cont.).

Features Classifier Accuracy (%)
GSV with 1 GMM component trained on SRC 99.21
the MOBIPHONE SVM 98.41

NN 98.02

GSV with 2 GMM components trained on SRC 96.83
the MOBIPHONE SVM 95.24

NN 94.05

SSFs SRC 98.81
SVM 96.03
NN 94.84

average MFFCs SRC 96.82
SVM 97.22
NN 96.03
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Non-Speech Segments and UBM Adaptation
Introduction

We examine two tasks: brand identification and model identification.

A 3-stage process describes mobile phone identification:
1 Feature extraction: MFCCs.
2 Feature modeling: GMMs and GSVs.
3 Classification: Maximum Likelihood (ML), SVMs, Neural models.
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Non-Speech Segments and UBM Adaptation
Classification

ML classification using the GMM probability density function as a
similarity measure between the test utterance and the brand or model
the GMM represents.

SVM classification using the GSVs of the utterances.

Neural classification with an architecture specifically designed for
mobile phone identification12 that uses both the MFCCs and the
GSVs as input.

12
C. Zeng, S. Feng, D. Zhu, and Z. Wang,“Source acquisition device identification from recorded audio based on

spatiotemporal representation learning with multi-attention mechanisms,” Entropy, vol. 25(4):626.

C. Kotropoulos Multimedia Forensics March 9, 2025 31 / 105



Non-Speech Segments and UBM Adaptation
Classification

Alternative approaches

The process discussed thus far will be referred to as the traditional
method.

We examine two alternative approaches to the traditional method.
1 Non-speech approach: Extracts the MFCCs from the non-speech parts

of the signals.
2 UBM approach: Obtains the GMMs from the Maximum A Posteriori

(MAP) adaptation of a UBM. A UBM is a large speaker-independent
GMM trained via the EM algorithm to capture the distribution of the
MFCCs in an extensive set of speakers.

C. Kotropoulos Multimedia Forensics March 9, 2025 32 / 105



Non-Speech Segments and UBM Adaptation
Non-speech approach

Speech parts have speaker-dependent information irrelevant to the
task at hand.

The noise-like signals in the non-speech parts have a flatten spectral
density and better capture the mobile phone’s recording circuitry
transfer function.

Non-speech MFCCs yield higher mutual information than the MFCCs
obtained from the entire speech recording13.

Voice activity detection14 is used to obtain non-speech frames.

13
C. Hanilci and T. Kinnunen, “Source cell-phone recognition from recorded speech using non-speech segments,” Digital

Signal Processing, vol. 35, pp. 75–85, 2014
14

J. Sohn, N. S. Kim, “A statistical model-based voice activity detection,” IEEE Signal Processing Letters, vol. 6, no. 1, pp.
1–3., 1999.
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Non-Speech Segments and UBM Adaptation
UBM Approach

Thus, speaker recognition techniques, such as a UBM15, are justified.

Utterance-specific GMMs are obtained from the UBM via MAP
adaptation of the utterance’s MFCC vectors.

GSVs are obtained by concatenating only the mean vectors of the
UBM-adapted GMMs.
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Non-Speech Segments and UBM Adaptation
UBM Approach

Figure 7: MAP adaptation of a UBM.

15
T. Reynolds, T. Quatieri, and R. Dunn, “Speaker verification using adapted Gaussian mixture models,” Digital Signal

Processing, vol. 10, no:1-3, pp. 19–41, 2000.
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Non-Speech Segments and UBM Adaptation
Datasets

MOBIPHONE dataset

It consists of 10 recorded speech utterances of 24 speakers, 12 males,
and 12 females, using 21 mobile phones belonging to 7 brands. The
24 speakers were randomly chosen from the TIMIT dataset.

Two sets of augmentations were applied to the dataset to compare
the relative performance of the three methods under noisy recording
conditions and amplified speaker variability:

1 Recording conditions: Gaussian noise, background noise, and
reverberation.

2 Speaker variability: Croppings, loudness, pitch, speed, and Vocal Tract
Length Perturbation (VTLP).
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Non-Speech Segments and UBM Adaptation
Datasets

The Central China Normal University (CCNU) mobile dataset

The CCNU Mobile dataset16 consists of 642 speech recordings from
the TIMIT dataset recorded by 45 mobile phones belonging to 9
brands. Multiple devices of the same mobile phone model are
included in the dataset.

Unfortunately, the entire dataset is not publicly available. We were
able to use a small subset of the dataset, which consists of 5
8-second-long audio samples of female speakers per mobile phone.

This data scarcity will allow us to test the different methods under
realistic audio forensic conditions with limited data.

16
C. Zeng, D. Zhu, Z. Wang, Z. Wang, N. Zhao, and L. He, “An end-to-end deep source recording device identification

system for web media forensics,” International Journal of Web Information Systems, vol. 16, no. 4, pp. 413–425, 2020.
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Non-Speech Segments and UBM Adaptation
MOBIPHONE Results

Table 6: ML classification accuracy for brand and model identification on the MOBIPHONE
dataset using audio and non-speech MFCCs.

Brand Model

# Components Audio Non-speech Audio Non-speech

1 66.6667% 79.3651% 96.0317% 98.8095%

2 73.4127% 86.1111% 98.8095% 99.6032%

4 88.4921% 96.8254% 98.4127% 100%

8 91.6667% 99.2063% 99.2063% 100%

16 88.0952% 99.6032% 98.4127% 100%

32 93.254% 100% 98.8095% 100%

64 98.0159% 99.6032% 98.4127% 100%
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Non-Speech Segments and UBM Adaptation
MOBIPHONE Results

Table 7: The best classification accuracy on MOBIPHONE for model identification on the first
set of augmentations.

Audio Non-speech UBM
ML SVM ML SVM SVM

Baseline 99.2063%8 96.4286%1/MC 100%100%100%4 99.2063%1/M 98.8095%4/M

Gaussian 89.881%16 90.6746%1/MC 78.9683%64 93.8492%93.8492%93.8492%1/M 92.8571%2/M

Background 93.0556%16 95.4365%1/MC 83.3333%64 94.0476%1/MC 97.4206%97.4206%97.4206%2/M

Reverberation 98.6111%8 96.2302%2/MC 99.6032%99.6032%99.6032%32 98.4127%1/M 98.2143%4/M

All 91.5675%64 92.2619%1/M 80.2579%64 91.8651%1/MC 96.2302%96.2302%96.2302%2/M
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Non-Speech Segments and Universal Background Model
Adaptation
MOBIPHONE Results

Table 8: The best classification accuracy on MOBIPHONE for model identification on the
second set of augmentations.

Audio Non-speech UBM
ML SVM ML SVM SVM

Baseline 99.2063%8 96.4286%1/MC 100%100%100%4 99.2063%1/M 98.8095%4/M

Crop 99.4048%32 96.2302%2/MC 100%100%100%4 99.0079%1/MC 99.6032%4/M

Loudness 98.8095%8 97.4206%1/MC 99.2063%99.2063%99.2063%8 99.0079%1/M 99.0079%2/M

Pitch 94.6429%64 86.9048%1/MC 98.4127%98.4127%98.4127%32 97.0238%1/MC 97.4206%4/M

Speed 98.8095%8 96.627%1/MC 100%100%100%4 99.4048%1/MC 98.0159%8/M

VTLP 99.4048%99.4048%99.4048%64 98.0159%1/MC 98.8095%4 99.2063%1/MC 98.8095%4/M

All 97.2884%64 93.1217%1/M 98.8095%98.8095%98.8095%32 96.6931%1/M 98.8095%98.8095%98.8095%8/M
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Non-Speech Segments and Universal Background Model
Adaptation
CCNU Mobile Results

Table 9: Mean and standard deviation of the classification accuracy for model identification using
the three approaches with ML, SVMs, and the neural network proposed by (Zeng et al., 2023).

Audio Non-speech UBM

ML-64 98.5185% (0%) 98.5185% (0%) -

SVM-1M 90.8148% (5.7292%) 96.5185% (3.5447%) -

SVM-1MC 81.9259% (6.3356%) 90.7407 % (1.0030%) -

SVM-4M - - 93.3333% (0.7808%)

MFCC branch 22.3703% (5.2471%) 43.7037% (7.7454%) 21.7037% (5.3307%)

GSV branch 56.7407% (4.3361%) 89.8518% (2.9845%) 98.2222% (1.1152%)

Fusion branch 52.1481% (2.0717%) 86.4444% (4.3199%) 63.5555% (13.1018%)
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Source Camera Identification
Sensor Pattern Noise

Sensor Pattern Noise (SPN), produced by imaging sensors, is a
fingerprint of imaging devices linking photographs to the cameras
acquired them. SPN can identify both the brand and the model of
the camera. It is primarily caused by the different sensitivity of
individual sensor pixels to light. SPN captures the intensity variations
of individual pixels. It is a unique pattern deposited in every image.

SPN is usually has a very high dimension (e.g., 1024 × 1024 pixels).
However, such a high-dimensional feature is more likely to introduce
redundancy and interfering components. For example, the extracted
SPN can be contaminated by colour interpolation, JPEG compression,
distortion introduced by denoising filter, and other artifacts. Most of
these artifacts are non-unique, redundant, and less discriminant.

To reduce SPN dimension, Principal Component Analysis (PCA)
denoising was applied 17.
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Source Camera Identification
Sensor Pattern Noise

However, the PCA denoising method is vulnerable when the training
samples are seriously affected by the image content. Accordingly, it is
difficult to train a reliable feature extractor by using a polluted
training set.

A camera identification framework based on the Random Subspace
Method (RSM) and Majority Voting (MV) was proposed to solve this
problem18.

17
R. Li, C. -T. Li, and Y. Guan, “A compact representation of sensor fingerprint for camera identification and fingerprint

matching,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Brisbane, Australia, Apr. 19-24, 2015, pp.
1777–1781.

18
R. Li, C. Kotropoulos, C. -T. Li, and Y. Guan, “Random Subspace Method For Source Camera Identification,” in Proc.

IEEE Int. Workshop Machine Learning for Signal Processing, Boston, MA, September 17-20, 2015.
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Source Camera Identification
Sensor Pattern Noise

Figure 8: (a) An image taken by Canon Ixus70; (b) the noise residual extracted from (a), which
is contaminated by scene details; (c) clean reference SPN of Canon Ixus70. (Note the intensity
has been scaled to the interval [0,255] for visualization purposes.)
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Source Camera Identification
Camera identification framework

Assume there are n images {Ii}ni=1, taken by c cameras {Cj}cj=1.
Each camera has captured Ej images. First the noise residual is
extracted from the N ×N-pixel blocks cropped from the center of the
full-sized images, yielding {xxx i ∈ RN×N}ni=1 which are centered. These
n SPN templates are used as the training set. PCA is performed to
seek a set of orthonormal vectors vvvk and their associated eigenvalues
λk of the autocorrelation matrix SSS ∈ RN2×N2

SSS =
1

n

n∑
i=1

xxx i xxx
>
i = AAAAAA> (4)

where AAA = 1√
n

[xxx1|xxx2| . . . |xxxn] ∈ RN2×n.
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Source Camera Identification
Camera identification framework

To make PCA feasible for the high-dimensional SPN, the n� N2

eigenvectors of AAA>AAA ∈ Rn×n are computed. Assume vvv ′k is the unit
eigenvector of AAA>AAA with eigenvalue λ′k . The eigenvector vvvk of SSS is
obtained by vvvk = AAAvvv ′k which is associated to eigenvalue λk = λ′k .

The feature space is derived TTT = [vvv1|vvv2| . . . |vvvq] ∈ RN2×q by retaining

the eigenvectors associated to the top q = minq′

{∑q′
i=1 λi∑n
i=1 λi

≥ 0.99

}
eigenvalues.

There will be some leading eigenvectors in the feature space TTT that
capture scene details rather than the real SPN components.

This problem can not be simply solved by removing some specific
eigenvectors from the feature space.
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Source Camera Identification
Camera identification framework

Let us randomly select M < q eigenvectors from the feature space TTT
to form a random subspace RRR. By repeating L times the process of
randomly selecting subsets of TTT , a set of random subspaces
{RRR l ∈ RN2×M}Ll=1 is generated.

An SPN template xxx is represented by a set of random features
yyy l = RRR>l xxx , l = 1, 2, . . . , L.

To query whether an SPN sample is taken by a specific camera in the
database:

1 By performing the random subspace feature extraction on the training
samples {xxx i}ni=1, a set of features {yyy i,l}ni=1 is generated in each
random subspace RRR l .

2 The reference yyy j,l of camera Cj in the subspace RRR l is estimated

yyy j,l =
1

Ej

Ej∑
i=1

yyy i,l , j = 1, 2, . . . , c . (5)
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Source Camera Identification
Camera identification framework

3 For a query SPN vector xxx t , we obtain a set of features {yyy t,l}Ll=1. Once
the query feature yyy t,l and the camera reference SPN yyy j,l are generated,
the camera identification problem is modeled as a binary hypothesis
testing problem

H0 : yyy t,l 6= yyy j,l (the query image is not taken by the jth camera)

H1 : yyy t,l = yyy j,l (the query image is taken by the jth camera) (6)

The binary hypothesis testing problem (6) is solved by a
correlation-based detector. That is, the normalized cross-correlation
ρ = corr(yyy t,l , yyy j,l) is compared to a threshold η. The detector decides
H1 if ρ ≥ η and H0 if ρ < η.
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Source Camera Identification
Camera identification framework

4 In each subspace RRR l the aforementioned identification process is
performed once. By repeating this process for each subspace,L
decisions will be generated in total. The final decision is made
according to the majority voting among the L decisions. If more than
L/2 decisions are voted for H1, the final decision will assert that the
query image is taken by the jth camera.

C. Kotropoulos Multimedia Forensics March 9, 2025 49 / 105



Source Camera Identification Experiments
Experimental results

Experiments are conducted on the Dresden Image database19.

A total of 1200 images from 10 cameras are involved in the
experiments, where each camera captured 120 images. These 10
camera devices belong to 4 brands, each brand has 2 ∼ 3 different
models. For each camera, 20 images are used for training and the
remaining 100 ones are used as query images for testing. There are
100× 10 intraclass and 900× 10 interclass correlation values in total.

The noise residuals are computed from the luminance channel, as the
luminance channel contains information of all the three channels. The
experiments are performed on an image block of size 256× 256 pixels
cropped from the centre of a full size image.

19
T. Gloe and R. Böhme, “The Dresden image database for benchmarking digital image forensics,” Journal Digital Forensic

Practice, vol. 3, no. 2-4, pp. 150–159, 2010.
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Source Camera Identification Experiments
Experimental results

Table 10: Cameras used in the experiments.

Camera ID Resolution

Canon Ixus70 A C11 3072 × 2304
Canon Ixus70 B C12 3072 × 2304
Canon Ixus70 C C13 3072 × 2304
Nikon CoolPixS710 A C21 4352 × 3264
Nikon CoolPixS710 B C22 4352 × 3264
Samsung L74wide A C31 3072 × 2304
Samsung L74wide B C32 3072 × 2304
Samsung L74wide C C33 3072 × 2304
Olympus mju 1050SW A C41 3648 × 2736
Olympus mju 1050SW B C42 3648 × 2736
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Source Camera Identification Experiments
Experimental results

There are only two parameters in the method, namely, the dimension
of random subspace M and the number of random subspaces L.

The performance of the method is improved by increasing the number
of random subspaces. Since there is a trade off between the
performance and the computational complexity, we set L = 600.

The performance of the proposed method is same to that of the
PCA-based extraction method when M/q = 1. As long as M < q,
the proposed method achieves a higher true positive rate than the
PCA-based extraction method.

The performance of the method is not sensitive to L and M.

The overall Receiver Operating Characteristic (ROC) curve is used to
compare the performance of the different methods.
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Source Camera Identification Experiments
Receiver Operating Characteristic curves
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Figure 9: ROC curves of different variants of Lukas’ method20.

20
J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Inf. Forensics

Security, vol. 1, no. 2, pp. 205–214, 2006.
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Source Camera Identification Experiments
Receiver Operating Characteristic curves
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Figure 10: ROC curves of different variants of Kang’s method21.

21
X. Kang, J. Chen, K. Lin, and A. Peng, “A context-adaptive SPN predictor for trustworthy source camera identification,”

EURASIP Journal Image and Video Processing, vol. 2014, no. 1, pp. 1–11, 2014.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Contributions

An innovative method for Source Device Identification (SDI) has been
developed22.

Deployment of an optimized ResNet-based model23 employing Neural
Architecture Search (NAS) for classifying camera devices as well as
sets of camera devices of the same model.

Gradient-weighted Class Activation Mapping24 is integrated to
identify and emphasize key features within log-Mel spectrograms
extracted from the video’s audio track.

Bandpass filtering is applied to selectively preserve mid to
high-frequency information.

22
C. Korgialas, G. Tzolopoulos, and C. Kotropoulos, “On Explainable Closed-Set Source Device Identification Using log-Mel

Spectrograms from Videos’ Audio: A Grad-CAM Approach,” IEEE Access, vol. 12, pp. 121822-121836, 2024.
23

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Computer
Vision Pattern Recognition (CVPR), June 2016, pp. 770–778.

24
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,“Grad-CAM: Visual explanations from deep

networks via gradient-based localization,” in Proc. IEEE Int. Conf. Computer Vision (ICCV), October 2017, pp. 618–626.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
VISION dataset

The VISION dataset25 is utilized, comprising images and videos
captured across various scenes and imaging conditions.

35 camera devices, representing 29 camera models and 11 camera
brands, are encompassed within VISION.

VISION includes 648 native videos, which remain unaltered
post-capture by the camera.

These native videos were disseminated via social media platforms like
YouTube and WhatsApp, with corresponding versions available in the
dataset.

The dataset is partitioned into training, testing, and validation sets to
conduct a typical five-fold stratified cross-validation.

25
D. Shullani, M. Fontani, M. Juliani, O. A. Shaya, and A. Piva, “VISION: A video and image dataset for source

identification,” EURASIP Journal on Information Security, (2017), pp. 1–16.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
VISION dataset

Table 11: The 35 devices featured in the VISION dataset.

Device ID Brand & Model Device ID Brand & Model

D01 Samsung Galaxy S3 Mini D19 Apple iPhone 6 Plus
D02 Apple iPhone 4s D20 Apple iPad Mini
D03 Huawei P9 D21 Wiko Ridge 4G
D04 LG D290 D22 Samsung Galaxy Trend Plus
D05 Apple iPhone 5c D23 Asus Zenfone 2 Laser
D06 Apple iPhone 6 D24 Xiaomi Redmi Note 3
D07 Lenovo P70A D25 OnePlus A3000
D08 Samsung Galaxy Tab 3 D26 Samsung Galaxy S3 Mini
D09 Apple iPhone 4 D27 Samsung Galaxy S5
D10 Apple iPhone 4s D28 Huawei P8
D11 Samsung Galaxy S3 D29 Apple iPhone 5
D12 Sony Xperia Z1 Compact D30 Huawei Honor 5c
D13 Apple iPad 2 D31 Samsung Galaxy S4 Mini
D14 Apple iPhone 5c D32 OnePlus A3003
D15 Apple iPhone 6 D33 Huawei Ascend
D16 Huawei P9 Lite D34 Apple iPhone 5
D17 Microsoft Lumia 640 LTE D35 Samsung Galaxy Tab A
D18 Apple iPhone 5c
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Log-mel spectrogram generation

Figure 11: Transformation from the raw waveform of the audio signal to the log-Mel
spectrogram.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Grad-CAM

Grad-CAM identifies the feature maps Ak within a particular
convolutional layer. Using backpropagation, Ak are associated with a
weight αc

k calculated by pooling the gradients of the class score, Y c ,
with respect to the feature map. The pooling operation is a Global
Average Pooling (GAP) that summarizes the gradients across the
spatial dimensions u × v of the feature map.

The specific weight for the k-th feature map and class c is computed
as:

αc
k =

1

Z

∑
i ,j

∂Y c

∂Ak
i ,j

, (7)

where Z is the number of pixels in the feature map. The indices i and
j stand for the row and column of the feature map, respectively.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Grad-CAM

The weights αc
k are used in a linear combination with the feature

maps to produce a localization map for class c , which is processed
through a Rectified Linear Unit (ReLU). The ReLU function is applied
to ensure that only features with a positive influence on the class
score are considered, setting all negative values to zero.

Lc = ReLU

∑
k

αc
k Ak

 . (8)

The localization map Lc is then upscaled to the dimensions of the
input image through bilinear interpolation, resulting in the final visual
explanation that highlights the influential regions for the specific class
c .
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Grad-CAM

Figure 12: Flowchart of the Grad-CAM approach for visualizing and explaining CNN features.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Flowchart

Figure 13: Flowchart depicting the ResNet-based CNN architecture for SDI with Grad-CAM
visualizations highlighting influential regions in audio spectrograms.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Log-Mel spectrograms overlayed with Grad-CAM visual explanations

Figure 14: Eight randomly selected log-Mel spectrograms overlayed with Grad-CAM visual
explanations, highlight the key areas of interest for camera device classification within the
ResNet-based model.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Confusion matrices using the overall test data

Figure 15: Confusion matrix obtained by evaluating the ResNet-based model on the VISION test
dataset using log-Mel spectrograms of video audio from the test set along the 35 devices.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Confusion matrices using the overall test data

Figure 16: Confusion matrix obtained by evaluating the Grad-CAM-driven ResNet-based model
on the VISION test dataset using band-passed filtered log-Mel spectrograms of video audio from
the test set along the 35 devices.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Bootstrap analysis

A bootstrap methodology26 is used to compare the performance of
the ResNet-based model and Grad-CAM-driven ResNet-based model
across the overall, flat, indoor, and outdoor test data.

Accuracy of model m, AC (m):

AC (m) =

∑M
i=1 CM(m)ii∑M

i=1

∑M
j=1 CM(m)ij

, (9)

where CM(m)ii are the diagonal elements of the confusion matrix and
CM(m)ij are the off-diagonal elements, with M being the number of
classes (i.e., device models).

26
P. J. Hardin and J. M. Shumway, “Statistical significance and normalized confusion matrices,” Photogramm. Engineer.

Remote Sens., vol. 63, no. 6, pp. 735–739, Jan. 1997.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Bootstrap analysis

Differences between the accuracies of the two models are subjected to
a bootstrapping process to generate empirical distributions under the
null hypothesis H0, which posits no significant difference in model
performance. These differences, Di , are determined for each
bootstrap sample and are described by the following expression:

Di = AC (m
(i)
2 )− AC (m

(i)
1 ), (10)

where m
(i)
1 and m

(i)
2 are the i-th bootstrap samples for the first and

second models, respectively.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Bootstrap analysis

The z-scores for each observed difference Dobs in accuracy between
models are indicated by dashed red lines. The observed z-scores for
overall, flat, indoor, and outdoor test accuracy deviations are 1.854,
1.701, 1.4104, and 2.43, respectively. The outdoor z-score notably
surpasses the 1.96 threshold, indicating a significant performance
difference from the expected mean under H0 at significance level 0.05.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Bootstrap analysis

(a) Histogram of bootstrapped overall test
accuracy differences.

(b) Histogram of bootstrapped flat test accuracy
differences.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Bootstrap analysis

(c) Histogram of bootstrapped indoor test
accuracy differences.

(d) Histogram of bootstrapped outdoor test
accuracy differences.

Figure 17: Comparative analysis of Grad-CAM-driven ResNet-based model test accuracy with
histograms displaying the normalized distribution of bootstrapped accuracy differences
(z-values) for overall, flat, indoor, and outdoor test datasets. The dashed red line in the
histograms marks the observed discrepancy in accuracy.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Bootstrap analysis

The p-values are also computed to evaluate the statistical significance
of the observed differences in model accuracy. This interpretation is
guided by the computation of the p-value, which is the proportion of
the bootstrapped differences Di that are as extreme or more than the
observed difference Dobs , i.e.,

p-value =
1

N

N∑
i=1

I(|Di | ≥ |Dobs |), (11)

where I(·) is the indicator function that equals 1 if the condition is
met and 0 otherwise, and N = 1000 is the total number of bootstrap
iterations. The observed difference Dobs is defined as the discrepancy
in accuracy between the two models under comparison.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Bootstrap analysis

For the overall test data, the observed difference has a p-value of
0.054, suggesting marginally significant evidence against H0. For the
flat test scenario, a p-value of 0.089 suggests marginally significant
evidence against H0, while the indoor test scenario, with a p-value of
0.142, exhibits non-significant evidence against H0. The outdoor test
scenario shows a p-value of 0.015, suggesting significant evidence
against H0.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Comparison with the state-of-the-art

The Grad-CAM-driven ResNet-based model is assessed by adopting
the dataset-splitting approach in27.

The VGG-based model is the sole method employing log-Mel
spectrograms, achieving an accuracy of 65.78% across the overall test
data. In contrast, the proposed method demonstrates a significant
improvement, achieving a test accuracy of 97.07% on the same
dataset. The superiority of our approach is further corroborated by
the confusion matrix presented in Figure 18, which visually articulates
the precision of the proposed model.

However, a fusion framework is introduced to further enhance the
CMI accuracy27, leveraging both video frames and audio log-Mel
spectrograms, resulting in an accuracy of 99% for the overall test
data.
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Explainable Closed-Set Source Device Identification Using
Log-Mel Spectrograms from Videos’ Audio
Comparison with the state-of-the-art

Figure 18: The confusion matrix obtained by evaluating the Grad-CAM-driven ResNet-based
model on the VISION dataset for the overall test data following the setup in27.

27
D. Dal Cortivo, S. Mandelli, P. Bestagini, and S. Tubaro, “CNN-based multi-modal camera model identification on video

sequences,” J. Imag., vol. 7, no. 8, p. 135, Aug. 2021.
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Attention-Based Source Device Identification Using Audio
Content from Videos and Grad-CAM Explanations
Contributions

A Convolutional Block Attention Module (CBAM)28 is integrated into
a ResNet-based model, with hyperparameters optimized using NAS29,
to enhance the SDI accuracy among the 35 devices of the VISION
dataset.

The proposed framework leverages spatial and temporal modules to
improve the model’s ability to focus on specific areas of log-Mel
spectrograms derived from the audio content of videos, as highlighted
by Grad-CAM explanations.

28
S. Woo, J. Park, J.-Y. Lee, and I. Kweon, “CBAM: Convolutional block attention module,” in Proc. Europ. Conf.

Comput. Vision, Sep. 2018, pp. 3–19.
29

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation hyperparameter optimization
framework,” in Proc. Int. Conf. Knowledge Discov. Data Mining, Jul. 2019, pp. 2623–2631.
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Attention-Based Source Device Identification Using Audio
Content from Videos and Grad-CAM Explanations
CBAM-ResNet-based model

Figure 19: Flowchart depicting the CBAM-ResNet-based model for SDI, illustrating the
integration of CBAM with the ResNet architecture. Grad-CAM explanations are derived from
the final residual block of the network.
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Attention-Based Source Device Identification Using Audio
Content from Videos and Grad-CAM Explanations
CBAM-ResNet-based model

Table 12: Comparison of validation accuracy (%) and average AUC across all classes between
the proposed CBAM-ResNet-based model and the approaches developed in22.

Model Preprocessing Method
Overall Flat Indoor Outdoor

Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC

ResNet-based22 No filtering 89.90 0.975 89.71 0.975 92.29 0.979 87.71 0.966

Grad-CAM-driven ResNet-based22 Bandpass filtering 94.76 0.984 96.29 0.987 94.57 0.988 93.43 0.979

CBAM-ResNet-based No filtering 97.81 0.989 98.29 0.990 98.86 0.990 97.14 0.982
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Content from Videos and Grad-CAM Explanations
CBAM-ResNet-based model

Figure 20: Confusion matrix obtained by evaluating the CBAM-ResNet-based model on the
VISION test dataset.
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Attention-Based Source Device Identification Using Audio
Content from Videos and Grad-CAM Explanations
CBAM-ResNet-based model

Figure 21: ROC curves generated for the validation set illustrate the overall data scenario across
35 devices in the VISION dataset.
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Attention-Based Source Device Identification Using Audio
Content from Videos and Grad-CAM Explanations
CBAM-ResNet-based model

Figure 22: Comparison of confusion matrices for the overall test set, following the methodology
in27.
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Camera Model Identification Using Audio and Visual
Content
Contributions

A framework for Camera Model Identification (CMI) is developed,
treating CMI as a classification problem30 .

CNNs trained on either audio or visual content are employed for this
purpose. Experimental findings showcase promising performance
when employing either audio or visual content individually.

Additionally, based on the classification decisions derived from the
audio and visual content, late fusion is applied to these decisions using
fundamental fusion rules, specifically the product and sum rules31.

30
I. Tsingalis, C. Korgialas, and C. Kotropoulos, “Camera Model Identification Using Audio and Visual Content from

Videos,” in Proc. 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications, Porto, Portugal,
June 30 – July 4, 2024.

31
J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classifiers,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 20, no. 3, pp. 226–239, 1998.
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Camera Model Identification Using Audio and Visual
Content
Audio and visual content feature extraction

Audio content: Three windows and hop parameters are used to
construct a three-channel Log Mel-Spectogram for each audio
recording.

Visual content: The raw video frames are used.

Figure 23: Three Mel-frequency spectrograms.
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Camera Model Identification Using Audio and Visual
Content
Training pipeline

We denote the instances of the mth modality as {γγγ(n)
m }Nn=1.

Let WWW
[l ]
m and f

[l ]

WWW
[l ]
m

be the parameters and the activation function of

the lth layer on a Neural Network (NN) related to the mth modality,
with l = 1, . . . , L− 1.

Let {www c ′,[L]
m }Cc ′=1 be the collection of parameters belonging to the Lth

layer where www
c ′,[L]
m is associated with the c ′th classification node, with

c ′ = 1, . . . ,C .
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Camera Model Identification Using Audio and Visual
Content
Classification pipeline

Let

Pr(Cc ′ | γγγ
(n)
m ; www

c ′,[L]
m ) =

exp(www
c ′,[L]
m

>
aaa

(n)[L−1]
m )∑C

c=1 exp(www
c,[L]
m

>
aaa

(n)[L−1]
m )

(12)

be the classification probabilities of the c ′ classification node where

aaa
(n)[L−1]
m =

(
f

[L−1]

WWW
[L−1]
m

◦ · · · ◦ f [1]

WWW
[1]
m

)
(γγγ

(n)
m ) (13)

is the activation output of the penultimate CNN layer, and ◦ denotes
function composition.

Audio and Visual Content NN Classifier:
Audio Content NN Classifier: ResNet18

Visual Content NN Classifier: ResNet50
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Camera Model Identification Using Audio and Visual
Content
Classification pipeline

(a) Audio classification pipeline using ResNet18.

(b) Video frame classification pipeline using ResNet50.

Figure 24: Flowchart depicting the CMI employing frames extracted from video sequences.
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Camera Model Identification Using Audio and Visual
Content
Classification pipeline

In addition, the classification probabilities of the nth sample γγγ
(n)
m related to

the mth modality are given by

ppp
(n)[L]
m =


Pr(C1 | γγγ(n)

m ; www
1,[L]
m )

Pr(C2 | γγγ(n)
m ; www

2,[L]
m )

...

Pr(CC | γγγ
(n)
m ; www

C ,[L]
m )

 ∈ RC . (14)

In the following, the superscript [L] is omitted for simplicity. Given the

samples {γγγ(n)
m }Nn=1 of the mth modality, we obtain

PPPm = [ppp
(1)
m ,ppp

(2)
m , . . . ,ppp

(N)
m ] ∈ RC×N . (15)
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Camera Model Identification Using Audio and Visual
Content
Unimodal and multimodal testing procedure

Unimodal Testing Procedure. The predicted classes of each sample

{γγγ(n)
m }Nn=1 are given by

cccm = [C1
m, C2

m, . . . , CNm ]> ∈ RN , (16)

where

Cnm = argmax
c=1,...,C

[
ppp

(n)
m

]
c
, (17)

is the predicted class of the nth sample with Cnm ∈ {CCc=1}.
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Camera Model Identification Using Audio and Visual
Content
Unimodal and multimodal testing procedure

Multimodal Testing Procedure. The product rule is given by

PPPprod = PPP1 �PPP2 � · · · �PPPM ∈ RC×N , (18)

where � denotes the Hadamard, element-wise, product. The sum rule
is given by

PPPsum = PPP1 +PPP2 + · · ·+PPPM ∈ RC×N . (19)
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Camera Model Identification Using Audio and Visual
Content
Unimodal accuracy

Table 13: Accuracy (%) using either visual or audio content

Visual-ResNet-50 Audio-ResNet-18

Native WhatsApp YouTube Native WhatsApp YouTube

Fold 0 88.31 67.53 77.02 96.10 93.50 91.9
Fold 1 85.70 83.11 72.97 94.80 90.90 93.24
Fold 2 89.60 63.63 77.02 90.90 88.31 95.94
Fold 3 89.47 68.42 63.51 93.42 94.73 82.43
Fold 4 88.15 64.47 78.37 94.73 88.15 95.94

Mean
± StD

88.24
± 1.4

69.43
± 7.07

71.77
± 5.44

93.99
± 1.76

91.11
± 2.66

91.89
± 4.98

C. Kotropoulos Multimedia Forensics March 9, 2025 89 / 105



Camera Model Identification Using Audio and Visual
Content
Late fusion accuracy

Table 14: Accuracy (%) using the product and sum rule

Product Rule Sum Rule

Native WhatsApp YouTube Native WhatsApp YouTube

Fold 0 97.40 94.80 95.94 97.40 96.10 94.59
Fold 1 97.40 94.80 94.59 96.10 96.10 93.24
Fold 2 98.70 93.50 95.94 97.40 90.90 97.29
Fold 3 97.36 94.73 90.54 94.73 97.36 86.48
Fold 4 97.36 86.84 95.94 96.05 88.15 97.29

Mean
± StD

97.64
± 0.52

92.93
± 3.08

95.59
± 0.52

96.33
± 0.99

93.72
± 3.56

93.77
± 3.97

C. Kotropoulos Multimedia Forensics March 9, 2025 90 / 105



Camera Model Identification Using Audio and Visual
Content
Statistical significance

Next, we study three null hypotheses:

H0,1: The classification performances achieved by the two fusion rules
are equivalent.

H0,2: The classification performance achieved solely with visual
content is equivalent to that achieved with the product rule.

H0,3: The classification performance achieved solely with audio
content is equivalent to that achieved with the product rule.
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Camera Model Identification Using Audio and Visual
Content
Statistical significance

The p-values are computed by applying McNemar’s significance
test32.
Most of the p-values exceed the predetermined significance threshold,
so we lack significant evidence against H0,1.
We have significant evidence against H0,2.
For H0,3, most of the p-values exceed the predetermined significance
threshold, so we lack significant evidence against H0,3.

Table 15: McNemar’s p-values to evaluate the null hypotheses H0,2 and H0,3

Visual-ResNet-50 Audio-ResNet-18

Native WhatsApp YouTube Native WhatsApp YouTube

Fold 0 0.023 10−5 0.001 1.0 1.0 0.371
Fold 1 0.007 0.026 0.001 0.617 0.248 1.0
Fold 2 0.044 10−5 0.001 0.041 0.133 0.479
Fold 3 0.041 10−5 10−5 0.248 0.617 0.007
Fold 4 0.045 10−4 0.002 0.617 1.0 0.479

32
Q. McNemar, “Note on the sampling error of the difference between correlated proportions or percentages,”

Psychometrika, vol. 12, no. 2, pp. 153–157, 1947.
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Explainable Camera Model Identification
Contributions

Grad-CAM explanations are incorporated into the audio component of
the framework, improving the interpretability of the audio-based
decisions by highlighting important regions in the log-Mel
spectrograms33.

A band-pass filtering method is introduced based on Grad-CAM
explanations, addressing the ResNet-18 model’s tendency to focus on
specific frequency regions.

Figure 25: Flowchart depicting the explainable CMI using the audio (top) and video (bottom)
content.

33
C. Korgialas, I. Tsingalis, and C. Kotropoulos, “Explainable Camera Model Identification Employing log-Mel Spectrograms

from Videos’ Audio,” in Proc. IEEE Asilomar Conf. on Signals, Systems, and Computers, Monterey CA, October 27-30, 2024.
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Explainable Camera Model Identification
Grad-CAM heatmaps

Figure 26: Grad-CAM explanations on log-Mel spectrograms of audio content from videos for
five randomly selected devices under the Native, WhatsApp, and YouTube scenarios.
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Explainable Camera Model Identification
Experimental results

Table 16: Accuracy (%) comparison between the Grad-CAM-driven method and previous
methods30.

Visual-ResNet-50 Audio-ResNet-1830 Grad-CAM-driven Audio-ResNet-18

Native WhatsApp YouTube Native WhatsApp YouTube Native WhatsApp YouTube

Fold 0 88.31 67.53 77.02 96.10 93.50 91.90 96.02 94.68 92.53
Fold 1 85.70 83.11 72.97 94.80 90.90 93.24 95.15 92.80 94.61
Fold 2 89.60 63.63 77.02 90.90 88.31 95.94 92.37 90.59 96.42
Fold 3 89.47 68.42 63.51 93.42 94.73 82.43 93.75 93.25 86.84
Fold 4 88.15 64.47 78.37 94.73 88.15 95.94 96.01 89.25 96.11

Mean ± StD 88.24 ± 1.40 69.43 ± 7.07 71.77 ± 5.44 93.99 ± 1.76 91.11 ± 2.66 91.89 ± 4.98 94.66 ± 1.49 92.11 ± 2.11 93.30 ± 3.53
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Explainable Camera Model Identification
Experimental results

Table 17: Accuracy (%) comparison between the Product and Sum rules in previous and
Grad-CAM-driven methods.

Product Rule30 Sum Rule30 Grad-CAM-driven Product Rule Grad-CAM-driven Sum Rule

Native WhatsApp YouTube Native WhatsApp YouTube Native WhatsApp YouTube Native WhatsApp YouTube

Fold 0 97.40 94.80 95.94 97.40 96.10 94.59 98.67 96.12 96.91 97.91 97.82 96.02
Fold 1 97.40 94.80 94.59 96.10 96.10 93.24 98.01 95.91 94.11 97.89 97.05 94.01
Fold 2 98.70 93.50 95.94 97.40 90.90 97.29 98.92 93.21 94.98 98.08 92.21 95.51
Fold 3 97.36 94.73 90.54 94.73 97.36 86.48 98.73 95.11 91.32 96.51 95.88 90.09
Fold 4 97.36 86.84 95.94 96.05 88.15 97.29 98.22 90.18 96.38 97.12 90.92 96.77

Mean ± StD 97.64 ± 0.52 92.93 ± 3.08 95.59 ± 0.52 96.33 ± 0.99 93.72 ± 3.56 93.77 ± 3.97 98.51 ± 0.34 94.11 ± 2.22 94.74 ± 1.98 97.50 ± 0.60 94.78 ± 2.72 94.48 ± 2.37
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Online Fusion
Preliminaries

Let T = [ttt(1), . . . , ttt(N)] ∈ RC×N be the matrix of target variables.

The (c ′, n) element of TTT is denoted by t
(n)
c ′ . The target vector t(n),

that corresponds to the sample xxx
(n)
m , adheres to the one-hot encoding

scheme. That is, if xxx
(n)
m belongs to class Cc ′ , the target vector ttt(n) has

zero elements except for the c ′th element, which is set to one.

Probability of assigning the input xxx
(n)
m to class Cc ′

y
(n)
mc ′ = Pr(Cc ′ | xxx

(n)
m ; www

c ′,[L]
m ) = Pr(Cc ′ | xxx

(n)
m ), (20)

Activations of the last layer

aaa
(n)[L]
m =


Pr(C1 | xxx (n)

m ; www
1,[L]
m )

Pr(C2 | xxx (n)
m ; www

2,[L]
m )

...

Pr(CC | xxx
(n)
m ; www

C ,[L]
m )

 ∈ RC . (21)
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Online Fusion
Online product rule loss function

P

 C⋃
c ′=1

{www c ′
m′}Mm′=1

 = −
N∑

n=1

C∑
c ′=1

M∑
m′=1

t
(n)
c ′ ·

· ln
Pr(Cc ′)1−M y

(n)
m′c ′

C∑
c ′′=1

Pr(Cc ′′)1−M y
(n)
m′c ′′

. (22)
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Online Fusion
Model updating

The parameters of the model www c
m can be updated in a manner of

steepest descent by using the gradient

∇www c
m
P

 C⋃
c ′=1

{www c ′
m′}Mm′=1

 = −
N∑

n=1

(
t

(n)
c − ỹ

(n)
mc

)(
1− y

(n)
mc

)
aaa

(n)[L−1]
m .

(23)

Each classifier can be trained separately.

P
(⋃C

c ′=1{www c ′
m′}Mm′=1

)
is convex w.r.t. www c

m, highlighting a desirable

property of the online product rule loss function during the
optimization procedure.
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Online Fusion
Late fusion

The class c is given by

c =
C

argmax
c ′=1

Pr(Cc ′)1−M
M∏

m′=1

Pr(Cc ′ | xxx
(n)
m′ ). (24)

The product rule (24) can be used for multimodal fusion after the
classifiers for each modality have been trained.
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Online Fusion
Online product rule loss function enhanced with label smoothing

P̆

 C⋃
c ′=1

{www c ′
m′}Mm′=1

 =

(1− ε)P

 C⋃
c ′=1

{www c ′
m′}Mm′=1


− ε

C

N∑
n=1

C∑
c ′=1

M∑
m′=1

ln
Pr(Cc ′)1−M y

(n)
m′c ′

C∑
c ′′=1

Pr(Cc ′′)1−M y
(n)
m′c ′′

. (25)
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Online Fusion
Deep learning models

Table 18: Number of parameters for each deep learning model.

Model Parameters (Millions)

SqueezeNet1 131 0.741
MobileNetV3Small32 0.947
MobileNetV3Large32 3.320

ResNet-1833 11.194
ResNet-5033 23.578

31
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy

with 50x fewer parameters and <0.5MB model size,” arXiv:1602.07360, 2016.
32

A. Howard, M. Sandler, G. Chu, L. -C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al.,
“Searching for MobileNetV3,” in Proc. of the IEEE Conference on Computer Vision and Pattern Pecognition, pp. 1314–1324,
2019.

33
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 770–778, 2016.
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Online Fusion
Mean SDI accuracy

Table 19: The mean SDI accuracy (%) and the corresponding StD in each fold, after applying
online fusion to tune the MobileNetV3Large networks used for classifying visual and audio
content. Late fusion is performed in each fold between these two models, with the results
reported under the column Late Fusion.

Fine-Tuned Models Late Fusion (Visual Net/Audio Net)

Visual Net (MobileNetV3Large) Audio Net (MobileNetV3Large) MobileNetV3Large/MobileNetV3Large

Native WhatsApp YouTube Native WhatsApp YouTube Native WhatsApp YouTube

Fold 0 80.38/85.37 69.15/79.20 61.56/69.42 91.42/96.75 91.29/96.80 87.52/91.74 93.67/95.93 93.83/99.20 87.69/95.86
Fold 1 85.41/93.65 72.92/82.40 55.21/74.38 92.73/96.83 91.19/97.60 83.93/92.56 96.65/100.0 93.71/97.60 81.72/92.56
Fold 2 81.50/86.40 67.22/78.40 60.07/66.94 91.63/96.80 91.86/95.20 81.86/90.91 93.49/95.20 92.23/94.40 80.28/90.90
Fold 3 79.80/86.51 63.89/76.80 63.48/69.17 90.75/95.24 86.63/92.00 86.13/91.67 94.36/95.23 90.49/95.20 88.12/95.00
Fold 4 76.82/81.60 64.35/74.40 68.68/70.83 88.67/95.20 91.48/95.20 87.34/92.50 91.23/93.60 92.30/96.00 92.15/92.50

Mean
± StD

80.78/86.70
± 2.78/3.90

67.50/78.24
± 3.32/2.64

61.80/70.14
± 4.39/2.45

91.04/96.16
± 1.34/0.77

90.49/95.36
± 1.94/1.92

85.35/91.87
± 2.16/0.60

93.88/95.99
± 1.73/2.14

92.51/96.48
± 1.21/1.72

85.99/93.96
± 4.38/1.91

C. Kotropoulos Multimedia Forensics March 9, 2025 103 / 105



Concluding Remarks

AEGIS dataset including video and ground truth ENF will be released.

Device identification can be cast as a learning problem within a unified
hypergraph framework representing model and brand information.

Other research avenues include continual learning and federated
learning to address distributed learning and promote person sensitive
data preservation.

Niche applications will be pursued, e.g., Social Network Identification.
Are there suitable fingerprints to be exploited for detecting text
generated by ChatGPT in a passive mode?
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