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Introduction: Motivation

Motivation

= Wildfires are increasing in frequency and
intensity globally.

= Climate change and human activities are major
contributors.

- human activity and lightning: almost 50:50

= 2020: Over 4M hectares burned in the U.S.,
$19B economic loss.

= Releases carbon and pollutants, worsening air
quality.

= Threatens biodiversity, infrastructure, and
human lives.

UNIVERSITY OF FACULTY OF
WATERLOO | Burer



T
Introduction : LA Fires 2025

Devastating wildfires raged across LA since Jan 7, 2025, Los Angeles

fueled by severe Santa Ana winds and dry conditions. [1] FI RES

= At least 18 deaths reported, with over 180,000 people .
anta Ana nds of up to mp. 1. .
evacuated. More than 13,400 structures destroyed or grel e, conilA v ook ol J ol IR
slowing firefighting efforts.

damaged, scorched over 200,000 acres of land. [1]

Hurst Fire

Y 771 Acres burned, 37% contained

= Major challenge: Fires encroaching narrow, winding roads e

y 14K Acres burned, 3% contained

in affluent suburbs hindering quick evacuations, causing

o 4
San Fernando
3 Kenneth Fire S
gridlock [2]
»

Calabasas Glendale

= Critical Issue: Inefficient resource allocation led to dry
hydrants and low water pressure in several areas limiting 7 Los‘Angeles
firefighters' ability to combat the blazes effectively. [3]

Pasedena

Santa Monica

Huntington

Palisades Fire Park

4 20K+ Acres burned, 8% contained

Over 35K acres have burned

@ National Interagency Fire Center, around LA. an area over
CAL FIRE (as of Jan. 10th, 2025) twice the size of Manhattan.
[1] https://inylaw.com/blog/firefighting-efforts-in-the-2025-los-angeles-wildfire/ UNIVERSITY OF
[2] https://www.bbc.com/future/article/20250109-why-los-angeles-was-so-hard-to-evacuate-during-the-wildfires/ % WATERLOO Eﬁ%‘f:gg:G

[3] https://www.latimes.com/environment/story/2025-01-09/california-fires-water-supply-problems




Introduction: Problem Statement

Wildfires are dynamic and complex natural disasters that pose a significant challenge for
a prediction and management. Traditional models often struggle to capture the spatial and
Tz temporal dependencies critical for accurate fire spread prediction. Enhanced prediction
models are essential due to the increasing severity and frequency of wildfires.

ot The aim is to predict the next day's wildfire spread using a set of environmental inputs,
[ >— such as weather and topographical data, modeled as a semantic segmentation problem.

The task also involves utilizing this prediction to compute safe paths that safely avoid the
A fire-affected zones, thereby aiding in effective disaster management and evacuation
strategies.
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INTRODUCTION: OBJECTIVES

e Develop Vi-Net: Introduce a novel hybrid deep learning model combining the U-Net and Vision Transformer
e-©  (ViT) architectures to leverage their complementary strengths.

& Predict Wildfire Spread: Achieve high accuracy and recall in next-day wildfire spread predictions using a
multimodal dataset.

4 Integrate Safe Path Planning: Incorporate wildfire predictions into the A* algorithm for generating optimized, safe
> evacuation routes in fire-prone areas, addressing the urgent need for adaptive disaster management solutions.

v Address Data Imbalance: Utilize advanced loss functions like Focal Tversky Loss to prioritize minority classes
(fire regions) and improve prediction sensitivity.

Enable Generalization: Ensure the model's applicability across diverse geographical regions and unseen datasets for
robust real-world implementation.

&  Lay the Foundation for Future Work: Set the groundwork for integrating real-time data and expanding to global
gi2  wildfire datasets.
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Introduction: System Model

FIRE SPREAD
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o @ = OTHER
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®
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Background

Fire Spread
Models

Empirical Physics-based Data-driven
model model model

CNN, Bi-LSTM,
U-Net, ViT,
Earthformer,
Climax

FARSITE,
BEHAVE,
FlamMap

Rothermel
model
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Spread Model and Associated
Developments
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An Overview of FlamMap Fire
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A Model for Predicting Forest
Fire Spreading Using Cellular
Automata

Wildfire Segmentation Using
Deep Vision Transformers

Emulation of Wildland Fire
Spread Simulation Using Deep
Learning

2018
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1997
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Comprehensive
Explanation Report

US Forest Service

Conference
Proceedings

Ecological Modelling

Remote Sensing

Neural Networks

Historical wildfire events

Topographical and
meteorological data

Geospatial and
meteorological data

Cellular automata grids

Satellite imagery and
meteorological data

Deep learning models and
wildfire simulators

Empirical modeling

Physics-based modeling with
spatio-temporal predictions

Integrated semi-empirical fire
modeling

Stochastic simulations using
cellular automata

Deep vision transformers for
segmentation

Deep learning emulation of fire
spread
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[32]

[19]
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Model for Fire Spread
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Using SVM for Forest Fire
Prediction

A Review of Machine Learning
Applications in Wildfire Science
and Management

Paying Attention to Wildfire:
Using U-Net with Attention
Blocks on Multimodal Data

Physics-based Model of Wildfire
Propagation Towards Faster-
than-Real-Time Simulations
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Management
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Computers &
Mathematics with
Applications
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data
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SVM outputs

Various wildfire-related
datasets

Satellite and ground-based
Sensors

Physics-based simulations

Enhanced spatial modeling via
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Support Vector Machines for
prediction

Comprehensive ML review and
applications
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prediction
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Background

[21]

[4]

[20]

[11]

[39]

[38]

WildfireSpreadTS: A Dataset of
Multimodal Time Series for
Wildfire Spread Prediction

Machine Learning and Deep
Learning for Wildfire Spread
Prediction: A Review

Earthformer: Exploring Space-
Time Transformers for Earth
System Forecasting

Extreme Fire Spread Events and
Area Burned under Recent and
Future Climate in the Western

USA

CNN-BIiLSTM: A novel deep
learning model for near-real-
time daily wildfire spread
prediction.

Firepred: A hybrid multi-
temporal CNN model for
wildfire spread prediction
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2022

2022

2024

2023

Advances in Neural
Information
Processing Systems

Fire

Advances in Neural
Information
Processing Systems

Global Ecology and
Biogeography

Remote Sensing

Ecological Informatics

Multimodal time-series data

Historical fire data and
environmental models

Global earth system data

Climate models and
ecological metrics

Geospatial weather data

Satellite and ground-based
Sensors

Time-series analysis for spread
prediction

Comprehensive DL review in
wildfire spread

Space-time transformers for
forecasting

Ecological and biogeographical
insights on fire

CNN + LSTM networks

Multi-temporal convolutional
neural network
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Problem Formulation

1. Critical Need for Wildfire Prediction: Wildfire prediction safeguards lives, property, and
ecosystems by addressing the dynamic interplay of environmental, meteorological, and
human factors.

2. Leveraging Time-Series and Causality: Time-series models capture temporal
dependencies (e.g., today’s weather shaping tomorrow’s fire) and spatial correlations (e.g.,
wind affecting nearby areas), emphasizing causative relationships.

3. One-Day-Ahead Forecasting Approach: Focused on predicting wildfire spread for the
next day, this method combines past day's observations to align with time-series principles
and ensure actionable insights.

4. Challenges in Modeling Wildfire Dynamics: Accurate forecasting requires handling
high-dimensional, multivariate, multimodal, and temporal data to capture interactions
between variables like wind speed, humidity, and vegetation dryness.
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Problem Formulation

= Core Problems:

O -
[ Predict Wildfire Spread é] . - @ Develop Evacuation Routes ]

Multimodal Data Integration - - 4 5@ ) - - Safe Routes Identification
_ iotion - - - o i ~- Fire-Prone Area Analysis
Next-Day Prediction (‘)c})o
Core
Problem
N\ J

|

- - Fire Dynamics Modeling

T
|
1
|

Dataset Balancing Techniques

Imbalance Impact Analysis Temporal Data Handling
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Problem Formulation: Mathematical Formulation
(Wildfire Spread)

« Input: Multimodal tensor representing spatial- * Output Objective:

temporal features. . . .
= Predict a binary segmentation mask YERmw:

 Framing the Problem: .
= y(h,w) >= threshold: Fire presence.

= Predict next-day wildfire spread as a semantic

segmentation task. = y(h,w) < threshold: Fire absence.
« Input Representation: = Mapping Function:
= input structured as a 3D tensor XERMW~C: » A deep learning model F(X) maps input X to
C 1 qe : : : output Y:
= H,W: Spatial dimensions (region height and
width). = F:X->Y
= C: Feature channels (e.g., “éi.nd speed, = Captures complex interdependencies and
temperature, vegetation indices). temporal patterns in wildfire dynamics.
= xX(h,w,f) € X represents the value of feature f at . . i : g _ :
spatial location (h, w). g)itepauc;: Binary fire mask predicting next-day fire
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Problem Formulation: Model Scope

= U-Net: Extracts localized spatial
details for precise boundary

detection.
Localized Detail D,/h A\ Global Context
» ViT: Provides global context for Focus N Q Nz Understanding
broader fire spread understanding. UNet o viT
= Vi-Net: Combines both for robust, A
fine-grained accuracy and contextual -
coherence. Vit
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Problem Formulation : Dataset Sample

Ground
Features Truth
' e ~

fy R G..fi2 I3

-
-
-

> |
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e TAVEEENRD -
o — -
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-
-

» Cell Resolution: 1km x 1km

A 64km x 64km resolution sample 'S’ is extracted Dimensions of S:
with detected fire point as center of the frame HxWxC

Grid Dimensions: 64 km x 64 km
Resolution: 1 km x 1 km

€ S o]
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Problem Formulation: Path Planning Task
Formulation

Output from wildfire spread prediction is used as input for safe path planning. Ensures predictions
directly guide evacuation strategies.

Binary Fire Masks: Optimized A* Algorithm (OA¥*):

= Fire predictions are converted into binary = Applies the binary fire mask as a grid for
grids. pathfinding.

= Each cell in the grid is classified as: = Computes the shortest and safest route

, from source to destination.
= 1: Fire-prone (non-passable).

= Avoids high-risk regions identified in the

= 0: Safe (passable). fire mask.

UNIVERSITY OF
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Problem Formulation: Model Scope

» Fire predictions are transformed into

a binary mask.
Convert Fire Apply OA*
Predictions Algorithm = A grid is created to represent the fire
@ mask.
= The optimized A* algorithm is applied
3 o i N to the grid.

Create Binary
Grid

UNIVERSITY OF FACULTY OF
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Problem Formulation: Binary Grid
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Dataset Description and Preparation
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Dataset: Key Points

Dataset: Next Day Wildfire Spread

= Covers U.S. wildfire data from 2012 to 2020.

= Aggregated using the Google Earth Engine (GEE) framework, enabling the capture of a large ensemble
of fire events and observational variable.

= 18,545 recorded fire events for robust analysis.
= Multivariate Data: Contains 13 features, consists of 11 observational variables,

= Provides two snapshots of fire spread: at time t and t+1 day, allowing for the analysis of fire dynamics
over time.

= 1 km spatial resolution for detailed insights.

= Dataset split: 80% training, 10% validation, 10% testing.

UNIVERSITY OF
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Dataset: Data Collection Framework

T oo N\ owmrns Multimodal Dataset

MODI4AIVG —>| . FireMask Spatial/Temporal = MODIS: Fire masks at 1 km resolution.
Alignment
_ | :
skiv > Eevaton | | o 0ata roee = GRIDMET: Weather (temperature, wind,
g Drecton precipitation, humidity) and drought index at
> Region Selection 4 km resolution.
GRIDMET | [*| Humidity . ! S S . . .
>/ procpraton | R = VIIRS: Vegetation indices at 0.5 km
‘ resolution.
> Drought Index Feature Proce55|_ng
R T and Transformation . 1 . 1 .
Component L. = SRTM: Elevation data at 30 m resolution.
VIIRS e — l . . .
= GPWyv4: Delivered population density at 1

\GPWM. CIESIN — | szur::;ﬁm / K TFRecord C°""e'5i°"/_"" DATASET km resolution.

UNIVERSITY OF
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Dataset: Data Collection Framework

T N Spatial and Temporal Alignment
MODI4AI V6 — Pre':irl;iﬁa&::sk. Spatial/Temporal ReSOhltiOIl AdjuStment
Alignment
s | Bevaton | | rew oo Asgned Data = Features resampled to a consistent 1 km
R Y resolution.
Speed
> Region Selection = Downsampling: High-resolution data (e.g.,
GRIDMET ||| Humidity S !e,eded rogions SRTM at 30 m)
== i
H» Precipitation . .
= :. = e — = Upsampling: Low-resolution data (e.g.,
el and Translormation GRIDMET at 4 km, VIIRS at 0.5 km).
M Eng;?ny R:I:;se Prooessl,ed Data
s ] Vegomon | Temporal Aggregation
= Weather data recorded every 6 hours was

Population -
\GPWM. CIESN — | Densi / TFRecord Conversion —3  DATASET

\ ) averaged to daily metrics.

FACULTY OF
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Dataset: Data Collection Framework

/ Data Collection \ / Data Processing \ Reglon SeleCtlon
MODIAAL Ve —> e Fire Mask. Spatial/Temporal Active Fire Detection
Alignment
s | Bevaton | | rew oo Nign% - = Focused on regions with detected fire activity
g on day't
U Region Selection = Regions centered on 1 km x 1 km cells where
GRIDMET [ Humidiy S !e,eded rogions fire was observed.

> Precipitation
> Drought Index Feature Processing

and Transformation

Region Size

> Eroy Roiease T = Each fire region expanded to a 64 km x 64 km
VIIRS —>  Vegetation l area.
= Provides spatial context for fire spread while

|\ ) remaining computationally manageable.

Population i >
\GPW\_ 4. CIESIN 1 o / TFRecord Conversion >  DATASET

FACULTY OF
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Dataset: Data Collection Framework

Feature Processing

/ Data Collection \ / Data Processing \
Prev Fire Mask, X
MODI4A1 V6 > Fire Mask Spatial/Temporal

s = Features clipped to avoid extreme outliers:

SRTM Elevation Raw Data Aligned Data

Normalization and Clipping

i

= Based on physically meaningful limits or data
percentiles (0.1%—-99.9%).

ind - Direction &

v

¥
T

Temp - Max and Region Selection

= Normalized by subtracting the mean and dividing

- — umidi I . .
GRIDMET P — 64km x 64km selected regions by Standard deVIatIOI’I.
H» Precipitation 'L
= Femture Processing Multi-Channel Image Format
= — and Transformation . . .
L By roeee | l « Features structured into a 64 x 64 grid, forming
Proessed Dete multi-channel images
VIRs [ | Vegetation l .

S | » Each channel represents a feature, with the next-
TFRecord C°""e"'°"/“”’ DATASET day fire mask as the target label.

!

\GPWM. CIESIN Densi

N
/
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Dataset: Data Collection Framework

e W e Data Storage and Format
MODI4A1 V6 — Pre':irl;iﬁahg:sk. Spatial/Temporal TFReCOI'd COIlVerSlOll
Alignment
sw | Bevaton | [ awiou Akpond Dot = Dataset stored in TFRecord format, optimized
i Drecton ‘ for TensorFlow.
Temp - Max and Region Selecti . o :
gl eg'O"I - « Ensures efficient data access and loading for
. — Humidi o .
cpver >ty | o o T egon large-scale machine learning tasks.
> Precipitation
>/ Drougnt index Feature Processing = Each sample in the dataset represents a 64 km
and Transformation . . .
M= o —T1 x 64 km grid with 1 km x 1 km cells, capturing
s ] Vogoen | | spatial features around detected wildfires.
5 Population TFRecord Conversion >  DATASET

\GPWM. CIESIN Densi

N
/

—/
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Features

Dataset:

Feature Category Feature Details
Topographical Elevation Measures the height of the land surface from sea level.
Vegetation Cover Quantifies the density and type of vegetation, which influencesfuel for fires.
Anthropogenic Population Density Indicates the number of people living per unit area, crucial for evacuation and risk
assessment.
M eteorological Wind Direction Shows the direction from which the wind is blowing, influencing fire spread direction.
Wind Speed Measures how fast the wind is blowing, a critical factor in fire spread rate.

Minimum Temperature

Lowest daily temperature, affecting humidity and dryness of the area.

Maximum Temperature

Highest daily temperature, affecting evaporation and dryness of the area.

Humidity

M easures the amount of moisture in the air, impacting fire behavior.

Precipitation

Amount of rainfall, which can reduce fire risk by moistening potential fuel.

Additional Variables

Drought Index

Indicates prolonged absence of precipitation, increasing the vulnerability of the areato
fires.

Energy Release Component (ERC)

Represents the potential heat energy release per unit areain the event of afire.

Fire Masks (timet and t+1)

Binary indicators showing the presence or absence of fire at two time points, essential for
tracking fire progression.

FACULTY OF
ENGINEERING
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Dataset: Preprocessing

» Random cropping: Avoid
overfitting on centered fire regions.

Data Preprocessing Breakdown

= Noise augmentation: Improve

. 7 eqe Standardization : Random Cropping
robustness to data variability.

» Filtering invalid data: Remove
uncertain labels (e.g., clouds).

= Standardization: Scale features to

Zero mean, unit variance.

Filtering Invalid Noise
Data Augmentation

UNIVERSITY OF
WATERLOO | Burer
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Dataset: Preprocessing

Random Cropping Noise Augmentation

= Applied to input grids to focus on different parts = Random noise added to features (e.g., wind speed,
of fire regions. temperature).

= Reduces overfitting by preventing the model from =  Mimics real-world variability in environmental
memorizing centered fire areas. data.

= Ensures variability in training samples, improving = Enhances robustness of the model to unpredictable
generalization. inputs.

Filtering Invalid Data Standardization

= Removed data with missing or uncertain values = Features scaled to have zero mean and unit
(e.g., cloud interference). variance.

= Ensures high-quality, reliable data for training. = Normalization aligns all data ranges, enabling

. . efficient learning.

= Prevents model degradation due to noisy or

corrupted inputs. = Reduces the risk of one feature dominating due to
larger magnitude. %‘J WATERLOO | Feuryor




Dataset: Example

Energy Previous
Wind Wind Min Max Drought Population release fire Fire
Elevation direction speed temp temp Humidity Precipitation index Vegetation density component mask mask

1
't

=2 3000 &000

,. -
| ————]
1000 2000 100 00 20 35 283 288 294 304 0009 0.010 0.0 0.1
m degree m/s K K kq/kg mm,
daily total
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Dataset: Imbalance Ratio

= Fire regions <5% of total data,
Creating a maj Or imbalance. Fire and No Fire Ratios in Datasets

100 1 'y Fire
I No Fire

= Risk of bias toward "no fire"
predictions.

80 1

60 1

= Advanced loss functions (Focal
Tversky Loss) are employed to
mitigate this issue.

Percentage

20 A

Datasets Fire (%) No Fire (%)

Training Set 3.60 96.40 0 _ —
Train Validation Test
Validation Set 4.17 95.83
Test Set 3.74 96.26

UNIVERSITY OF FACULTY OF
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Dataset: Addressing Data Imbalance

Why Data Imbalance is Critical

= Wildfire datasets are highly imbalanced, with fire pixels often making up less
than 5% of the data.

» Models trained on such data are prone to favor the majority class ("no fire"),
leading to poor sensitivity for detecting fire regions.

= A high false-negative rate in fire prediction could have severe real-world
consequences, such as missed fire zones during emergencies.

UNIVERSITY OF
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T ——_—ihhSSS
Methodology: Wildfire Prediction \Wnrl-floa

Next-day Wildfire Spread
Dataset
|

Key Workflow Components: v

Random Cropping — Filtering Invalid Data —» Augmentation

1. Data Processing ¥

Standardization

v

Input (32 x 32 x 12)

o Input: 32x32x12 format

o Steps: Cropping — Filtering — Augmentation — Standardization —Test Set————| 172 Validation(Val), Test
plll
Train & Val Set
2. Model Pipeline
UNet) | VIiT | (ViNet
o Three parallel models: UNet, ViT, ViNet ™
Model évalualtion and Wgﬂgﬁjﬁ:‘”
o Train/Val/Test split ] [
parameters
o Loss calculation and backpropagation loop Tl Lose °3'°”'a“°"
3' Output Generatlon Predicted Next D‘;y Fire Terminate? —N
Mask
o Performance metrics are generated to assess accuracy vES
o Final output is a predicted next-day fire mask M
. « e UNIVERSITY OF
o Generated model (M) is produced after successful training %)‘g} WATERLOO | encineerine
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Methodology: Input & Output Structure

« HWC Format: In the context of our image data, HWC stands for Height, Width, and Channels.
This format is used to represent images where:

[0 H: Height of the image (number of rows).
0 W: Width of the image (number of columns).

[0 C: Number of channels (each channel represents a different feature).

O Input Tensor: O Output Tensor:
O Shape: [H, W, C] O Shape: [H, W, C]
O Example Shape: [64, 64, 12] O Example Shape: [32, 32, 1]
(for a 64x64 image with 12 input features) (for a 32x32 output image with 1 output

feature, the predicted fire mask)

FACULTY OF
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Methodology: U-Net Architecture

Input
Image

16 x 16

ENCODER BLOCK

DECODER BLOCK

32 x 32

Y

Y
64 x 64

>

32 x 32

64 x 64

16x 16

128 x 128

BOTTLENECK

Predicted
Fire Mask (y')
— “on
>
_
/ conv 3x3, LeakyReLU\

==3p max pool 2x2
up-conv 2x2

=3 conv 1x1

\—) skip connection /

€ S o]
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Methodology: U-Net Model Architecture

Encoder-Decoder Structure:

= Encoder: Extracts hierarchical spatial
features.

= Decoder: Reconstructs high-resolution
fire masks from encoded features.

= Skip connections between encoder and
decoder preserve fine-grained details.

Relevance to Wildfire Prediction:

= Excels in segmenting fine-scale fire

regions essential for mitigation planning.

Specialization:

Tailored for pixel-level segmentation tasks
like wildfire boundary detection.

Localized feature extraction ideal for
identifying small fire regions.

Strengths:

High precision in capturing detailed fire
boundaries.

Efficient processing of high-resolution
spatial grids.

FACULTY OF

UNIVERSITY OF
@ WATERLOO | encineeriNG



R
Methodology: U-Net Limitations and Challenges

Focus on Local Features: Scalability Issues:

= Struggles to capture long-range spatial = Performance degrades with increasing region
dependencies. sizes.

= Limited contextual understanding for large- = Insufficient when processing multimodal
scale fire propagation. spatial-temporal data.

Complex Interactions: Summary:

= Unable to model interactions between distant = U-Net excels in localized segmentation but
fire-prone areas. lacks the broader spatial context needed for

- S wildfire prediction.
= Loses global context critical for wildfire

spread prediction.

UNIVERSITY OF
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Methodology: Vision Transformers(ViT)

Architectrire
TRANSFORMER BLOCK e t;) Original
[ Norm ] Grid
y
- >
Conv2DTranspose |
( FFN ] J
L FireMask Prediction
[ Norm ] I I
\
>: 1
o
[ MHSA ] »
—
1) 1 ' T
Positional Embedding ----------- > |1 2 3 4 5 |--.-. N

\

| DENSE LAYER FOR PATCH PROJECTION |
_ A T A
"FT FE L EL S
atc : . : E _: ;

xXtr on v - - ’
input mage HuESES =

(Dimension: H x W x C)

€ S o]
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Methodology: Vision Transformers(ViT)

Architecture

Self-Attention Mechanism: Global Context:

= Captures long-range dependencies across = Excels in understanding large-scale patterns
spatial regions. in fire dynamics.

= Analyzes relationships between all pixels = Ideal for modeling wildfire propagation
simultaneously. across vast areas.

Patch-Based Processing: Flexibility:

= Divides input grid into smaller patches. = Adapts easily to diverse spatial resolutions

and multimodal inputs.
= Embeds patches as feature vectors for global

analysis.
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Methodology: VIT Limitations and Challenges

Lack of Fine-Grained Precision: Overfitting Risks:

= Struggles to capture small-scale, localized = Requires extensive data for effective training.

details in fire regions. . L .
= Sensitive to noise in input features, reducing

= Overshadowed by U-Net in precise boundary robustness.

detection.
Summary:

Computational Demands: . , o ,
= VIiT provides global insights but lacks fine-

= High memory and processing requirements grained segmentation capabilities, making it
for large input grids. insufficient for precise wildfire boundary
prediction.

= Training time increases with larger datasets
and grid resolutions.
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Methodology: Vi-Net Architecture
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Methodology: Vi-Net Architecture

Hybrid Approach:

= Combines outputs of U-Net and ViT architectures.

= Balances fine-grained segmentation with global context understanding.
Workflow:

= U-Net extracts localized spatial details.

= ViT models long-range dependencies across the input grid.

= Qutputs from both models are merged to generate final predictions.
Core Components:

= Encoder (U-Net): Captures precise fire region boundaries.

= Global Context Module (ViT): Integrates large-scale fire spread patterns.

UNIVERSITY OF
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Methodology: Vi-Net Architecture

Fusion Process: l l
= Outputs of U-Net and ViT combined through weighted summation: U-Net Model Vision (I,’i?')‘sm'm
FyiNet = @ X Tyyer + B X fyr l
Y
» Parameters a and B adjust the contributions of each model. L(’ég‘itsg";p# (;g:“\,’;gie:)
Integration Logic: ¥ ¥
Scaled Output Scaled Output
: : D (32x32x1) (32x32x 1)
= U-Net provides high-resolution fire masks.
= ViT contextualizes these masks with global insights. Concatenated Output
(32x 32 x 2)
Final Output:
Conv2D 64 filters
. . . . (32 x 32 x 64)
= Enhanced binary segmentation mask representing next-day fire
spread. Final Conv2D
(32x32x 1)
Advantages of Fusion: v
Output: Next-day Fire
prediction

= Retains U-Net’s precision and ViT’s contextual awareness.

. . . W UNIVERSITY OF FACULTY OF
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Methodology: Vi-Net Strengths

Overcoming U-Net Limitations: Addressing ViT Shortcomings:

= Adds global spatial awareness to U-Net’s = Incorporates ViT’s global context into precise
localized predictions. fire region boundaries.

= Reduces the risk of underpredicting large- = Improves performance on smaller, localized
scale fire spread. fire zones.

Robust Hybrid Architecture: Scalability and Adaptability:

= Provides the best of both worlds: fine- = Adapts to diverse fire scenarios and
grained segmentation and global insights. multimodal input data.

= Balances sensitivity (recall) and specificity = Effective for real-world wildfire prediction
(precision) for accurate predictions. and mitigation planning.
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Methodology: Path Planning Module

- A* Search algorithm, unlike other traversal techniques, has “intuition”.

. Like Dijkstra, A* works by making a lowest-cost path tree from the start node to the target
node. However, the A* algorithm introduces a heuristic into a regular graph-searching algorithm,
essentially planning ahead at each step so a more optimal decision is

= A* expands paths that are already less expensive
by using this function: f(n)=g(n)+h(n),

Where:
= f(n) = total estimated cost of path through node n

= g(n) = cost so far to reach node n

= h(n) = estimated cost from n to goal. This is the heuristic part of
the cost function.
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Methodology: Path Planning Module

Firemask is converted into a binary Added a safety check to ensure The algorithm processes nodes from the Updated path information and scores if
grid with a threshold of 0.5; values cells and their surrounding priority queue, prioritizing nodes with a better path is found. Once the goal is
> 0.5 become 1 (fire), others buffer (1 cell) are free from the lowest f-score to explore the most reached, the path is reconstructed from
become o (no fire). fire, enhancing path safety. promising paths first. start to goal
Conversion to Binary Safety Check Main Search Loop Path and Score
Grid Implementation Update
O O O O o O O O
\ 4 \ 4 ) o \ L\ A\ \ 4
Initial Prediction Heuristic Setup A* Search Algorithm Sisge & Neighbor Evaluation
Initialization
T.he model outputs a _ﬁrt‘:maSk Implemented a heuristic function using Initialized A* algorithm with data Evaluated all 8 possible neighbor
image where pixels indicate Euclidean distance to estimate the structures for tracking evaluated nodes, movements (including diagonals),
fire (1) or no fire (0). shortest path cost, allowing efficient actual costs (g-score), estimated costs ensuring they are within grid bounds
pathfinding. (f-score), and nodes to evaluate and safe from fire.
(IPriority queue).
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Methodology: Safe Path Planning with A*

Dynamic Fire Spread Prediction Modified A* Algorithm

= The algorithm integrates real-time fire = The A* algorithm calculates the shortest
spread predictions from Vi-Net to navigate possible path from the start node to the goal
changing conditions effectively. node while avoiding hazardous areas.

= Adapts to fire progression, ensuring safer = Incorporates fire avoidance heuristics to
routing even in dynamic environments. prioritize safety over speed.

UNIVERSITY OF
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Methodology: OA* Algorithm

Fire-Prone Regions as Obstacles Efficiency Through Heuristics

« Nodes marked as 1 (fire-affected) or within a = Utilizes the Euclidean distance heuristic to
defined buffer zone are considered calculate costs, ensuring computational
impassable efficiency without compromising accuracy.

= Evaluates eight possible movement directions

* Nodes in the grid labeled as 0 are for safe (including diagonals) to allow flexible and

navigable regions.

optimal pathfinding.
Buffer Zone Implementation Shortest and Safest Route Generation
» Adds an adjustable safety margin around = Balances the dual objectives of minimizing
fire-affected cells. distance and maximizing safety.
= This ensures no path is planned too close to » Ensures paths are computationally feasible in
fire zones, accounting for risks like heat or real time, critical for emergency scenarios.

smoke.
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Methodology: Vi-Net and Path Planning Integration

Next-day Wildfire
Spread Dataset

,

f -'t'\

Feature Selection

v

Data Preprocessing

v

Input Image (32 x 32 x 12)

Previous
Fire Mask

32

32 L 2

Fire Mask

‘.".32

32

Safe Path Generation > -

Module (OA®)

T

ud

T

Predicted Mext Day Fire

|

Train, Validation(Val), Test

Split
|

Backpropagation,
updating model parameters

Actual (&)

Vi-Net outputs used directly in A*
algorithm.

«Enables actionable insights for
emergency responders.

«Seamless workflow for prediction
and mitigation.

End-to-End System:

Mask
> U-Net
|/-— --\I L
L/
? Vision

Transformer (ViT)

Vi-Net Model

*

Predict — Avoid — Navigate
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Methodology: Vi-Net and Path Planning Integration

Challenges Addressed

Optimized A* Imbalanced :
Prone Regions

Path Planning Datasets o ‘
Route Optimization -- :
Efficient path planning using Addressing data imbalance r- Drone 0perations
optimized A* algorithm with advanced loss functions Safety PrOtOCOlS ! . - , |
” @ -~ Remote Sensing
Applications

[Emergency Evacuation Planning Z@i} [éﬁ Autonomous Navigation in Fire-}

Fire Dynamics
Integration
Incorporating fire dynamics for s PriOI'ity Assessment

practical applications

- - Resource Mapping
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Methodology: Performance Metrics

Term Definition

True Positives (TP) Regions correctly predicted as fire by the model that are
actually on fire in the ground truth.

True Negatives (TN) Regions correctly predicted as non-fire when they are
indeed not on fire in the ground truth.

False Positives (FP) Regions incorrectly predicted as fire by the model that
are not on fire in the ground truth, leading to overpre-
diction.

False Negatives (FN) Regions incorrectly predicted as non-fire by the model
that are actually on fire in the ground truth, leading to
underprediction.
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Methodology: Performance Metrics

Definition

Precision

Recall

F1 Score

Jaccard Index(IoU)

Precision measures the percentage of areas the model marked as fire that are
actually on fire in reality. Particularly valuable in scenarios where the
cost of a false positive is high.

Recall measures the percentage of real fire regions that the model correctly
identified as fire. Critical in situations where missing a positive instance is costly.

F1 Score is the harmonic mean of precision and recall. It is used to balance the
trade-offs between precision and recall in a single metric, which is especially useful
when dealing with imbalanced datasets.

The Jaccard index, also called Intersection over Union(IoU), is a measure of the
similarity between two sets. Evaluates overlap between regions of predicted and
ground truth sets.
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Results and Experiments
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Results: Experimental Setup

-
—)[ F1 Score
{ﬁof loU
_' 3 —» Metrics ~/
£OQ Training: | Calculation | _ ~
80% { Precision
9n Dataset Validation: | ( o, Model b
B splitting 10% ’L Evaluation 9[«] fai
| &
. 5 ® U-Net
—)[ U Testing: 10% éfér Baseline { y
J Comparisons N
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Results: Loss Functions

Models Loss Functions Precision | Recall | F1 Score
WCE 0.9433 0.7018 0.8048
Which loss function should be used U-Net Dice Loss 0.7491 0.8712 0.8056
for the model? Tversky Loss 0.9957 | 0.7050 | 0.8255
Focal Tversky Loss 0.9542 0.7506 0.8403
Weighted Cross Entropy Dice Loss WCE 0.8492 0.5671 0.6801
Suitable for imbalanced Effective for binary ] - o -

datasets, focusing on logits. segmentation tasks, ViT Dice Loss 0.9815 0.5635 0.7159
emphasizing overiap. Tversky Loss 0.9939 | 0.5559 | 0.7130
Tversky Loss Focal Tversky Loss Focal Tversky Loss 0.9873 0.5941 0.7418
Flexible for imbalanced Focuses on hard-to-classify WCE 0.9250 0.9322 0.9286
classes, adjusting sensitivity. examples, enhancing . - 1
performance. Vi-Net Dice Loss 0.9656 0.8999 0.9316
Tversky Loss 0.9626 0.9418 0.9521

Focal Tversky Loss 0.9834 0.9619 0.9725 |

UNIVERSITY OF FACULTY OF
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Results: Challenges of Loss Functions

Binary Cross . : .

 Treats all classes « Improves on BCE by » Tversky Loss is a
equally, failing to focusing on overlaps generalized version of
address imbalanced between predicted Dice loss,
datasets. and actual fire incorporating a

« Results in models regions. weighting mechanism
over-predicting "no  However, it still to balance the false
fire" regions. struggles to prioritize positives (FP) and

minority fire pixels false negatives (FN)
sufficiently. during training.
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Results: Loss Functions

Focal Tversky Loss
= A specialized loss function designed to prioritize fire regions.

= Combines concepts from Tversky Index and Focal Loss:

= Tversky Index introduces a weighting mechanism to balance false positives (FP) and false
negatives (FN).

= Focal Loss amplifies the penalty for misclassifications, particularly for the minority class (fire
regions).
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Results: Fire Mask Prediction (U-Net)

Actual Actual Actual Actual Actual Actual Actual Actual
- “- - - ]
i -
e — -

Predicted Predicted Predicted Predicted Predicted Predicted Predicted Predicted

> | I

ool

Predicted smaller fire regions well but struggled with spatial continuity in larger fire
clusters, leading to gaps in prediction.
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Results: Fire Mask Prediction (VIT)

Actual Actual Actual Actual Actual Actual Actual Actual
- r . J
L |
. b -
- t - &
L ! = - =
Predicted Predicted Predicted Predicted Predicted Predicted Predicted Predicted
= (=N r
mm A
- =
=4
. -_—h -
- nk
- - — -
= . 1iF 1 -

Captured larger fire clusters effectively but missed finer details, resulting in
fragmented predictions for smaller fire regions.
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Results: Fire Mask Prediction (Vi-Net)

Actual Actual Actual Actual Actual Actual Actual Actual
ﬁ : T e o ﬁ* N
LT .- : o

Predicted Predicted Predicted Predicted Predicted Predicted Predicted Predicted

# i E

Achieved the most accurate predictions by integrating local precision (from U-
Net) with global coherence (from ViT), reducing both under-prediction and over-
prediction errors.
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Results: Vi-Net Boundary Analysis

Artualil) Actual(2) (4] Actual{5] Actual{E) Actual(T)

Actual{3) Actual
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Results: Performance Metrics

Dataset U-Net ViT Vi-Net

IoU Fl P. R. IoU F1 P. R. IoU Fl1 P. R.

Training set 0.7879 | 0.8813 | 0.9981 | 0.7890 | 0.5625 | 0.7200 | 0.9130 | 0.5943 | 0.9803 | 0.9900 | 0.9979 | 0.9822

Validation set | 0.7409 | 0.8511 | 0.9727 | 0.7566 | 0.5261 | 0.6894 | 0.9527 | 0.5402 | 0.9902 | 0.9880 | 0.9951 | 0.9809

Test set 0.7325 | 0.8403 | 0.9542 | 0.7506 | 0.5829 | 0.7418 | 0.9873 | 0.5941 | 0.9415 | 0.9725 | 0.9834 | 0.9619

e Vi-Net consistently outperforms both base models across all metrics with particularly strong F1 scores >0.97
on all datasets

e Notable improvement in Intersection over Union (IoU) from U-Net (0.73) and ViT (0.74) to Vi-Net (0.98) on
test set, showing significantly better spatial accuracy

* Vi-Net achieves balanced Precision-Recall trade-off (both >0.96)
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Results: Loss and Accuracy Graphs
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= Sharp loss reduction (0-10 epochs) —
Fast learning

= Validation loss stability after epoch 20
= F1 score > 0.95 maintained

= Small train-val gap: Good
generalization

= Consistent high F1 despite val loss
fluctuations
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Results: OA* Algorithm Implementation on Binary
Grid

Circular Fire Grid
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Results: Scenarios with Navigable Safe Routes

Path Planning Avoiding Fire Mask Path Planning Avoiding Fire Mask
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Results: Scenarios with Navigable Safe Routes
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Results: Scenarios with No Safe Routes

Path Planning Avoiding Fire Mask Path Planning Avoiding Fire Mask
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Results: Scenarios with No Safe Routes

Path Planning Avoiding Fire Mask Path Planning Avoiding Fire Mask
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Results: Other Model Learnings

MPL gather current information of neighbor

GCN Model nodes, combine it to get a new embedding, and
update node embeddings.
« An attributed graph is a static graph that associates each ~ -
node with a set of attributes, representing node features. Te —
®o oo
» Each pixel = node in graph
. . _ Aggregate: Update:
» Define a correlation threshold. If the correlation between .
two nodes exceeds this threshold, an edge is created between For each node, the Each node updates its
model gathers feature feature vector based on
them. information from its the aggregated
neighboring nodes information and its own
(those connected by features.
. edges). This step involves
Performance Metrics Then, it aggregate the passing the aggregated
— features from the features through neural
Predictions Not accurate neighbors. This could be network layers (e.g.,
a simple sum, mean, or a GCNConv layers).
F1 Score 51.20% learned weighted sum of
the neighbor features.
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Results: Other Model Learnings

Spatial Context Preservation:

= GNNs, while powerful in capturing relational data, might struggle to preserve local spatial contexts
effectively when image data is transformed into graphs. Unlike CNNs or ViTs, GNNs do not
inherently understand Euclidean space (common in image data), making them less intuitive for
tasks requiring awareness of spatial organization directly from raw data formats like images or
grids.

Graph Construction Limitations:

= The effectiveness of GNNs heavily depends on the quality of the graph construction. Other
methods for graph creation: region-based, feature clustering. There must be check employed to
check if the graph exhibits expected patterns (e.g., nodes representing similar image regions
should have higher connectivity). Check: degree distribution, clustering coefficients
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Conclusion and Future Work
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CONCLUSION

Hybrid Vi-Net Model: Combines U-Net and ViT strengths, achieving 97.25% F1-score
and 94.15% IoU, improving wildfire spread prediction.

Effective Loss Function: Focal Tversky Loss enhances model performance by
addressing class imbalance and focusing on critical fire boundaries.

Safe Path Planning: Integrated predictive models with A* algorithm to create safe
evacuation routes, ensuring reliable disaster mitigation.

Innovative Approach: Advanced machine learning methodologies set a new
benchmark in predictive accuracy and real-world application for wildfire management.

Future Directions: Potential for real-time data integration to improve scalability and
adaptability in dynamic wildfire scenarios.
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Future Work

Extending the Dataset

Prediction Algorithm Approaches

Path Planning Algorithm Approaches

Integration of Real-Time Data Streams

Emergency Response Systems Enhancement

Interdisciplinary Collaboration
Explainability and Interpretability
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