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Mathematics & Physics the precursors of AI

• Early AI 1950 to 1979 – mostly logic and statistics:

– 1950: Alan Turing wrote “Computer Machinery and Intelligence”

– 1958: John McCarthy created LISP, a functional programming language

– 1959 to 1979 - Expert Systems, simple robots. AAAI founded in 1979
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• 1980 to 1993: Cold and hot waves of AI

– Minsky Perceptrons Book – Cold wave,
Hopfield & Tank - Optimization, Associative Memory 1985, Rumelhart MLP Back
Propagation Training 1987 - for classification as well as (sparse) Autoencoder (BP
without a teacher) – Hot Wave

The above tools are based on logic, probability, Linear Algebra,
Optimization using Gradient Descent and Lagrangian Functions
(Hopfield Net – Solving Optimization Problems and Associative Memory)



Some nice tools to play with

• AI Boom 1994 to 2011 – A transition from Domain specific AI to General-
purpose AI and bringing more ideas from physics

– 1995: Kohonen SOM for visualization of data distribution,
First GPU used in Sony Play Station I

– 1997: Deep Blue (rule based parallel search), Speech recognition (HMM),
RNN-LSTM,

– 2000: Restricted Boltzmann Machine (RBM) – an autoencoder model,
CNN for training filters instead of manual design,

– 200X: Diffusion Maps – A global geometric Framework for Nonlinear Dimensionality
Reduction – Lafon, Coifman, Joshua H et.al. Also used for data visualization.
Google Page-search (different from content based search),
Evolution of Scale Free Social Network applications – Network Clustering
Facebook, Twitter, Collaborative filtering, Disease spread, ….

– 2010-11: MS Kinect, ChatBots - IBM Watson, Siri
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Super General AI (SGAI) and Threat to Human Society
(starting with job erosion)

• Invasion of our brain and society by SGAI (like super-special hospitals!!):

– 2013: Variational Autoencoder for data (image) generation

– 2014: Attention Model to address remembering contexts in LLM. Generative
Adversarial Network (GAN) a generator-discriminator network model.

– 2015: U-Net (U for the shape) for bio-medical image segmentation. It is an auto-
encoder and can be used for feature compression.
Res-Net with skip connection to enrich feature and avoid vanishing gradient problem.

– 2015: Diffusion models to learn complex probability distribution from data
using techniques from non-equilibrium thermodynamics of diffusion.

– 2016: V-Net for Volumetric Medical Image Segmentation (MRI and CAT images)

– 2017: “Attention is all you need“ Beginning of Transformer Model for image generation

– 2022~: ChatGPT, Gemini, Jasper, Claude…..
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Today’s Agenda

• Fundamentals:
– Diffusion and Laplacian

– Graph Laplacian

– Laplacian of a Function
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• Human and Computer vision:
– Center surround,
Edge Detection and
Laplacian Filter

• Graph Laplacian:
– Network (graph) Clustering

– Matrix Rank Reduction and
Matrix Completion Problems

– Miscellaneous applications of
Diffusion on Networks

• Diffusion and Image
Enhancement

• Diffusion on a Graph

• Diffusion and Image
Generation



Diffusion, Percolation and the Network (Graph)
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There are many physical phenomena in which a fluid spreads randomly through a
medium. Consider the fluid as data, or virus. This spread depends on the nature of
the (1) fluid (say viscosity) and to the (2) medium (say porosity).
(1) is known as diffusion, and (2) as percolation.
Examples are how a virus or a news spreads in a population.

• The mediums (percolation part), like
permeability of rocks, is represented by
graphs with different node capacities and
edges (connection weights).

• The diffusion part depends on the fluid
viscosity, the mechanism a virus or a fake
Instagram posting spreads.

• Interesting things happen when the
network is scale-free. All naturally evolved
networks are scale-free.



Fundamentals: Diffusion and Laplacian

The temporal and spatial change of Concentration can be
determined using diffusion Equation
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Diffusion of Particles

For 1-dimension


 and for

3-dimension












Diffusion between two nodes i and j


and



where = depending on whether the nodes

are connected or not. c is the rate of flow.



Fundamentals: Diffusion on a Graph
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Diffusion to node is from all other nodes


where = is the rate of flow.

…
.





;

is i-th row of the adjacency matrix, is the i-th row of Degree matrix



Fundamentals: Diffusion on a Graph
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…
.

A and D are symmetric. [D - A] is symmetric. All elements of L are REAL.

As every row of [D - A] sums up to 0, there is a 0 eigenvalue, and
corresponding eigenvector is a vector with all elements equal.

is that eigenvector and corresponding eigenvalue = 0;
The other eigenvectors are interesting, they partitions the network.
The method is known as FIELDER’s “Spectral Graph Partitioning.”
Spectral Graph Partitioning is different from Matrix Spectral Analysis.

=



Let’s do an exercise on Fielder “Graph Spectrum Analysis”
(Not to confuse with Matrix Spectral Analysis)
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Laplacian Matrices are Sparse. Very efficient Algorithms to find Eigen Pairs



Graph Spectrum Analysis
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When all nodes are connected, only one partition:
is 0, ; Sign of the elements of

will divide the graph into two partitions.

0
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When two disconnected partitions:
; Sign of the

elements of will divide the graph into
two partitions. Elements of further eigen
vectors will give a hierarchical clustering.



Clustering of Term-Document Matrix
(Utility Matrix is a different Story)

12

Item
Customer

1 2 3 4 … N

Customer 1 1 1 1 1

Customer 2 1

Customer 3 1 1 1 1

Customer 4 1 1

…

Customer M 1

N terms in M different documents is the term-document Matrix.
N books and the purchase history of M customers.
N movies and rating information from M customers.
We need to cluster the column vectors. Consider the column vectors as
nodes, Calculate the adjacency matrix, and Graph Spectral Analysis.

Term
Document

1 2 3 4 … N

Customer1 0.05 0.01 0.05 0 0.1

Customer2 0 0 0.001 0 0

Customer3 0.07 0 0.07 0.02 0

Customer4 0 0 0 0.01 0.01

…

CustomerM 0 0 0 0 0.02
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Utility Matrix

• Two types of utility matrix

• Rating

Movie
Customer

HP1 HP2 HP3 Twilight

Customer1 5 4 5 3

Customer2 5 5 4

Customer3 5 4 5 4

Customer4 3 3 3 5

• Purchase lists

CD
Customer

CD1 CD2 CD3 CD4 CD5

A 1 1 1

B 1 1 1

C 1 1 1

D 1 1 1

E 1 1 1

F 1 1 1

G 1 1 1

H 1 1 1

JAZZ Indian Classic

Assessment and fact: The first matrix is users’
Assessments (rating). The empty places are empty.
The same in the purchase information, we can’t
put a zero for Items not purchased. Whether the
customer wants to purchase or not is important for
A Recommendation System. This is a multi-
objective optimization problem – Rank reduction
With lowest Forbenius Distance for filled in entries.



Computer Vision - Edge Detection, Laplacian Filter
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• Fundamentals:
– Diffusion and Laplacian

– Graph Laplacian

– Laplacian of a Function

• Human and Computer vision:
– Edge Detection and
Laplacian Filter

• Graph Laplacian:
– Network (graph) Clustering

– Matrix Rank Reduction and
Matrix Completion Problems

– Miscellaneous applications of
Diffusion on Networks

• Diffusion and Image
Enhancement

• Diffusion and Image
Generation



Derivative and Laplacian operation – Introduction to preliminary mathematics

• Laplace Transform (LT) is used to convert a function from time domain to frequency domain, much like
Fourier transform (FT). FT is a specific case of a LT. Laplacian is an operator.

• Laplacian of a 2-dimension function (x,y) is the divergence of the gradient of the function,
ଶ

• Function gives a scalar value at every point . For example,
ଶ ଶ

ଶ ଶ ଶ

ଶ ଶ ଶ

ଶ ଶ ଶ

is the slope of the steepest descent of It has a direction and magnitude, it is a
vector. Thus, creates a vector field on the plane.

x

y • has smaller values near the origin where the function
reaches its maximum. As is away from the origin, the vector is
larger. All vectors in this filed is towards the origin, where the
function reaches its maximum.

• For this example, the field vectors are converging to the
origin. So, the divergence value of this vector field of the gradient is
converging towards the origin, i.e., the divergence value is negative.



Derivative and Laplacian operation – Introduction to preliminary mathematics

• Laplacian of a 2-dimension function (x,y) is the divergence of the gradient of the function,

ଶ
ଶ

ଶ

ଶ

ଶ

• Exercise: For the Function
௫

ଶ

௬

ଶ , find the maxima and the minima. Find the Laplacian
at maxima and minima.

• Laplacian operator can be extended to n-dimensions for a function with n variables as follows:

ଵ ଶ 

ଶ


ଶ



ୀଵ
• For an image, it is a 2-dimensional function.



Derivative Kernel for Edge Detection: Edge Detection is the first step in Object Detection
Edges are used to find the contour/boundary of an Object in an image

• What is an edge – A rapid change in the image
brightness.

• Box-1 the image with two edges, the right edge is
sharp.

• Box-2 the Image brightness as a function of the
x-coordinate value. It is same at all x values.

• Box-3 is the first derivative of , డூ డ௫

డூ

డ௫ , the value of x gives the location of an

edge

• Box-4 is the plot of
డூ

డ௫

• Box-5 is same as Box-4 with a threshold value which

crosses
డூ

డ௫ at two points. The average gives the

location of edge.

• If the peak is lower than the threshold, when the
change is slow, we may not consider it as an edge.

• For an image, the dimension is two. We have one

Positions of the
edges

The original image

Image brightness
In x-direction

Threshold

Where is the edge



Derivative Kernel (Filter) for Edge Detection:

• Strength of the edge (sharpness)
డூ

డ௫

ଶ డூ

డ௬

ଶ

• Edge vector orientation (perpendicular to the edge)
ିଵ డூ

డ௬

డூ

డ௫

=ܫߘ
ܫ߲

ݔ߲
, 0

=ܫߘ 0,
ܫ߲

ݕ߲

Instead of a continuous 2-dim function, an image is a matrix of discrete pixel values
To find derivative, we need at least 2 pixels on the x-axis and y-axis.

represents the distance between neighboring pixels. In fact, it is just a scale factor.

•

•

• Using kernel: and

• Please note that towards (0,0) of the image it is -1

-1 +1

-1 +1

+1 +1

-1 -1



Derivative (Gradient) Kernel for Edge Detection – A few popular kernels:

Gradient Robert’s Prewitt Sobel Sobel

• Defining a threshold T to decide whether there is an edge or not:

• OR

•
.

• Edge pixels form boundary, and boundary detection is the next important task.
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Edge Detection Using Second Derivative: Laplacian Operator

For a 2-dimensional Image of continuous signal , Laplacian ଶ
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, is a scalar

Edges are zero-crossing of the Laplacian  . Laplacian does not provide direction of the edge.
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Let us see with the
example of an 1-dim signal





Zero-crossing points are edges

௨  ௗ௫, ோ௪ ௗ௫



Sobel filter – gradient edge detector



Edge Detection Using Second Derivative: Laplacian Operator and its kernels
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Other Laplacian Kernels are – This is CENTER-SURROUND
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Laplacian Kernels
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When diagonal
edges are
included the
Laplacian kernel
will be



Effect of Noise on Edge Detection – Merging Gaussian Filter with Edge
Detection



Convolution using Gradient-on-Normal & Laplacian-on-Normal Operator:
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1 1 1
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1 1 1

Similar to
Derivative of Gaussian

Similar to
Laplacian of Gaussian



Comparison of Gradient and Laplacian
Operators:

Two convolution
operations and
non-linear
operations to find
the magnitude
and direction



Canny Edge Detector:

• Canny Detector uses the best properties of gradient as well as Laplacian
operator. It is the most popular edge detector.

• Smooth the image: convolving Image with Gaussian filter

• Compute Image gradient (2-components, in the direction of y- and x-axes)
using Sobel filter :

• Find gradient magnitude at each pixel:

• Find gradient orientation at each pixel: 



• One directional Laplacian (second derivative) along

the gradient direction at every pixel:
మ


మ

• The Effect of the spread of Gaussian and its choice.
Small will extract edges of high resolution.
Large will extract edges at lower resolution.
Thus, resolution scaling can be done by changing . ࣌ is the

brightness
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Perception and Illusion:

Hering edge illusion
Edwald Hering 1861
We see acute angles as less
acute.

Café wall illusion
A. H. Pierce 1898

Reason: We see black
squares smaller than they
actually are.



Diffusion and Image Enhancement
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• Fundamentals:
– Diffusion and Laplacian

– Graph Laplacian

– Laplacian of a Function

• Human and Computer vision:
– Edge Detection and
Laplacian Filter

• Graph Laplacian:
– Network (graph) Clustering

– Matrix Rank Reduction and
Matrix Completion Problems

– Miscellaneous applications of
Diffusion on Networks

• Diffusion and Image
Enhancement

• Diffusion and Image
Generation



Diffusion on a Graph and Application to Image

30

…
.

A and D are symmetric. [D - A] is symmetric. All elements of L are REAL.

As every row of [D - A] sums up to 0, there is a 0 eigenvalue, and
corresponding eigenvector is a vector with all elements equal.

is that eigenvector and corresponding eigenvalue = 0;
The other eigenvectors are interesting, partitions of a network (graph).
The method is known as FIELDER’s “Spectral Graph Partitioning.”
Spectral Graph Partitioning is different from Matrix Spectral Analysis.

=



Diffusion and Image Enhancement
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…
. (1)

A and D are symmetric. [D - A] is symmetric. All elements of L are REAL.
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Diffusion and Image Enhancement
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ୀଵ

ܑ


 

Solutions for these ODEs are  
࢚ࣅ࣋ି


࢚ࣅ࣋ି

ୀ 




 ; As , and Eigenvectors of L are known,

s are known. We can solve Eq. (2)

From Eq (2), for all except  . So,  

As all elements of  are equal, and  is normalized,
ࢉ  ା⋯ାࢉ 



For a connected graph, all nodes will have the same share of the initial fluid content.



Heterogenous Diffusion and Image Enhancement
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(1) As

is invertible if the graph is connected.

As a linear or recursion equation:

(3)



Heterogenous Diffusion and Image Enhancement
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1. W is low rank for a meaningful image and high rank for random noise.
(Please remember embedding dimension – Diffusion Map).

2. In a Heterogenous network, each edge has its own diffusion rate. is still
symmetric. Sum of row is the degree of node.

3. Each pixel of the image is the network node.
4. There is a affinity between a pair of nodes, which determines the

connection weight.
 The affinity could be the grey levels (or RGB levels) of the pixels.
 It could be the proximity between two nodes.
 Original image is k=0; We recursively change the image using Eq. (3)

(3)



Heterogenous Diffusion and Image Enhancement
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When the affinity between a pair of pixels is
the grey level of the two pixels, then the
process of diffusion will make similar pixels
more similar –
The result is a sharper image.
Please note that at every step the pixel grey
level changes necessitating calculation of
the affinity matrix at every step.
When the proximity between a pair of nodes
is the affinity, the process of diffusion is
results in a smoother image. The affinity
matrix in this case is static.
In practice a combination of the two affinity
matrices is used, like Gaussian filter in
combination with Laplacian filter.

We can use Gaussian kernel with the distance affinity matrix on a high dimensional
data. . hen the affinity between a pair of pixels is



Diffusion Map and Dimensionality Reduction
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1. Embedding dimension, Riemannian Geometry, Geodesics.
2. A few Dimension Reduction and 2-D visualization Tools.
3. Principal Component Analysis (PCA).

1. Multidimensional Scaling (MDS). ௫ ௬
்


ଶ


ଶ

ி

ଶ

2. Isometric Feature Map (Isomap) – Same as MDS but uses geodesic distances
in high dimension, Using a method similar to DBSCAN. It assumes that for
close data points, Euclidean distances are same as geodesic distance. Then
add up considering neighboring data.

4. Diffusion Map: Find the connectivity using Euclidean distance, using a Gaussian
kernel. Use it as probability of moving from one data point to other. Run the
diffusion process as a random walk Markov process till convergence. We get the
diffusion map.



Diffusion Models for Image Generation
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100 X 100 color image space have ଶହ×ଶହ×ଶହ

possibilities. All “Apple”, “Dog”, “Face” etc. are only a subset
of the whole possible set of points. If we plot them on a two
dimensional plane, Apple images, dog images, face images
etc. will form clusters, because different images will have
similar pixel value distribution. A vast space will look as
random noise images as shown on the right.



Diffusion Models for Image Generation
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Vast area of the image space will
be points corresponding to noise
images. There will be small
clusters of meaningful images, like
cats, cars, dogs, human face, etc.
Let us restrict the random images
Gaussian distribution.



Diffusion Models for Image Generation
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The blue hills represent different meaningful
images, like dogs, cats, cars. The red dots are
image points which are random noise images.
Starting at one of the red points, the diffusion
model learns the direction of the convergence
arrows leading to one of the meaningful image
hill. Starting at different random points, we
end up at different images, and the converged
point on the hill, more often than not, will give
a new image, not one of those which were
used during the training.
Comparison with Hopfield model – Hopfield
network stores a set of fixed images. From an
initial random pixel distribution, it will converge
to a fixed image – not a variation of it.



Diffusion Models for Image Generation
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From a meaningful image we generate
noisy images, adding Gaussian noise, in
the different directions. We learn how to
return to the original image, in a number of
steps (usually 1000 steps).
We repeat this learning for all sorts of
images we want to generate. Thus, the
whole space of image points are get learnt.
Note that, for the learning we do not need
any annotated image. We add Gaussian
noise, in steps, to get the training sample
pair – noisy input clean output.
After sufficient learning over the image
space, we start from any random point and
the diffusion model converges on a
meaningful image, though not exactly one
of which are used for the training.



• Thank you for your attention.

• Questions are welcome.
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