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– Eric MSP Veith <eric.veith@uol.de>

– Currently head of a junior research group at University of Oldenburg, Germany
– Computer scientist by heart: First ICT, then distributed heuristics, then Multi-Agent

Systems, now advanced Deep Reinforcement Learning
– PhD in 2017: “Universal Smart Grid Agent for Distributed Power Generation

Management.”
– Creator of the Adversarial Resilience Learning methodology (advanced DRL in CNIs)
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Electricity Demand Rising
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Renewables Are Replacing Fossil Fuels

Seite 5
2025-03-10

General, Learned, and Verified: What the Future of Learning Agents in Power Grids Could Be —
Eric MSP Veith <eric.veith@uol.de> — Adversarial Resilience Learning

mailto:eric.veith@uol.de


AI as Promise of an Alternative

– Multi-Agent Systems promise local,
more more efficient grid operation

– Each node (subgrid, . . . ) an agent
– Nodes (agents) forecast local power

generation/consumption
– On disequilibrium, match forecasts to

achieve equilibrium
– An example, based on the literature [5,

3]
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Pillars of CPES-MAS

An approach for a Multi-Agent System (MAS) that manages high shares of volatile
generators and consumers in an energy system is based on three pillars:

1. Forecasting of local generation or demand
2. Communicating demand and generation (distributed snapshotting with the power grid

in mind)
3. Solving the combinatorical problem of demand and supply
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Agent Design
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Forecasting is industry state of the art now.
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Forecasting
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Communication

After forecasting works (i. e., imbalances are known in advance), each agent (= node)
must ask its neighbors to help attain the equilibrium.

– Approach: Use overlay network – (virtual) communication lines between agents based
on actual grid lines

– Requests (demand for power, or increase in feed-in that should be consumed) travel
via selective broadcast

– Each node along the way must try to contribute!
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Four-Way Handshake

sd Demand-Offer-Sequence

opt

[Can Offer]

opt

[Offer in Solution Set]

Agent A Agent B

2.1.1.1.1.1: Check for Conflicts

2.1.1.1: Solve Balance

2.1: Retrieve Forecast and Solve Balance

2.1.1: Offer Notification(isAnswer = true, answerTo = 1,
value = -)

2:
1: Demand Notification(isAnswer = false, value = P)

2.1.1.1.1.1.1: Acceptance Acknowledgement
Notification(isAnswer = true, answerTo = 2.1.1.1.1)

2.1.1.1.1: Acceptance Notification(isAnswer = true,
answerTo = 2.1.1)

Echo Request
Echo Reply

Online Notification
Offline Notification

Demand Notification
Offer Notification

Acknowledgement Notification
Withdrawal Notification
Acknowledge Acceptance Notification

Constraint Notification

<<enumeration>>
MessageType
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LPEP Forwarding

– Li : Links of the i-th agent
– li,k : k-th link of i-th agent
– distance(li,k): Distance metric
– mj : j-th message
– Mi : Message Journal of the i-th agent

Mi ={m1 7→ {(li,1,m1,distance(li,1)), . . . , (li,n,m
′
1,distance(li,n))},

. . . ,

mn 7→ {(li,1,mn,distance(li,1)), . . . , (li,n,m
′
n,distance(li,n))}}

li,1(t) ≤ li,2(t) ⇔ li,1,distance(t) ≤ li,2,distance(t)

Seite 12
2025-03-10

General, Learned, and Verified: What the Future of Learning Agents in Power Grids Could Be —
Eric MSP Veith <eric.veith@uol.de> — Adversarial Resilience Learning

mailto:eric.veith@uol.de


Forwarding

1. Respect Constraint Notifications:
1.1 No answer if min (M(m)) a constraint notification to m, additionally
1.2 send Withdrawal Notification iff already answered

2. misAnswer : forward on best connect (min (M(manswerTo)))
3. Selective Broadcast for requests:

3.1 Replace request with Constraint Notification, if necessary
3.2 M(m) = ∅: forward on |L| − 1 links
3.3 m′ = min (M(m′)): Update by fowarding
3.4 Otherwise: no forwarding
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How to Decide. . . ?

Request

Offers

1. Local forecasting shows demand or
oversupply of energy

2. Requests are sent
3. Other nodes make offers
4. Offers reach requestor
5. Decision about offers?
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Power Balance Concept

Set of Mappings [t1; t2) 7→ P .
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Problem Statement

‘Power Balance Algebra’:

{[t1; t3) 7→ P1} ∪ {[t2; t4) 7→ P2} =
{[t1; t2) 7→ P1, [t2; t3) 7→ P1 + P2, [t3; t4) 7→ P2} , (1)

[t1; t2) 7→ P1 ⊆ [t3; t4) 7→ P2

⇔ t1 ≥ t3 ∧ t2 ≤ t4 ∧ P1 ≤ P2 ; (2)

Distance Function: d(ri ) : ri 7→ R (3)

Problem Statement: ∑
i

bi ri ⊆ r0 , i ̸= 0, bi ∈ {0, 1} , (4)

Subject to: min
∑
i

bid(ri ), i ̸= 0, bi ∈ {0, 1} . (5)
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Atomization

P = (|P0|, |P1|, . . . , |Pi |, |PC |) ,
t = (t2,0 − t1,0, t2,1 − t1,1, . . . , t2,i − t1,i ) ,

∆P = ggT(P) ,

∆t = ggT(t) ,

xi,t̃,P̃=

1 if agent i influences the grid in time-subinterval t̃ with
power from the power-subinterval P̃ ,

0 else.
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Atomization Illustrated
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Model of the Disequilibrium

A symmetric function for each time-subinterval:

Sn
k(xi ,t̃=k,P̃) =

{
1 if n variables in xi ,t̃=k,P̃ equal 1,
0 else;

Full Disequilibrium:

S =
m⋂

k=1

Sn
k(xi ,t̃=k,P̃)
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Modelling Responses

Acceptance Function:

ri (xi ,t̃,P̃) =

1 if xi ,t̃,P̃ describes a valid interval for accepting the re-
sponse of i ,

0 else.

r2(xi ,t̃,P̃) = x̄2,3,1 ∧ x̄2,3,2 ∧ x̄2,4,1 ∧ x̄2,4,2

∨ x2,3,1 ∧ x2,3,2 ∧ x̄2,4,1 ∧ x̄2,4,2

∨ x2,3,1 ∧ x2,3,2 ∧ x2,4,1 ∧ x2,4,2
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Equilibrium

S =
m⋂

k=1

Sn
k(xi ,t̃=k,P̃)

R =
⋂

i∈I ′,t̃,P̃

ri (xi ,t̃,P̃) ,

C = S ∩ R .

– Best solution through ordering: ri ≤ ri′ ⇔ d(ri ) ≤ d(ri′)
– Generating next vector in S through permutation
– Exploiting the commutative property of the intersection operator:

Rn ∩ (... ∩ (R2 ∩ (R1 ∩ S)))
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Efficiency

Data Effect κ =
W

D

[
kWh
kB

]

Data Efficiency ξ =
∆P

D

[
kW
kB

]
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Comparison

Comparison with BDD approach by Inoue et al. (2014):

BDD Universal Agent

Loss Avoided (∆P) 17 208 kW 17 208 kW
Runtime > 16 min < 11 min (simulated)
D 100 MB 28.9 MB
ξ 0.168 kW/kB 0.581 kW/kB
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Universal Agent Efficiency
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– BDD approach in low-load situation: 100 kB
– Universal Agent concept especially useful in complex load situations
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Knowns vs. Unknowns

– The well-defined way of traditional MAS can guarantee a (theoretical) optimal solution
– They are robust: Cases known at design time can be handled
– Unknown unknowns and even some known problems can not be handled.

... We need a system that can act universally.
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“There are only two types of companies:
those who have been hacked,

and those who don’t yet know
they have been hacked.”

— John T. Chambers



Energy Systems Fit The Bill Just As Well

Dec 23rd, 2005
– Cyber attack causes blackout

in the Ukraine
– 3 DSOs targeted
– High level of automation helps

attackers
– Operative intrusion in OT;

disconnection of several
substations

– Several months in preparation

Seite 29
2025-03-10

General, Learned, and Verified: What the Future of Learning Agents in Power Grids Could Be —
Eric MSP Veith <eric.veith@uol.de> — Adversarial Resilience Learning

mailto:eric.veith@uol.de


VNC-Roulette







Learning Resilient Control

– Interconnected CPS have
always attack surface due to
their inherent complexity

– Low latency of ICT and OT
– High interdependence
– Complexity in breadth and

depth
– Cricital Services as SPOF (DNS,

BGP, SCADA, SDL)
– Learning Stratgies for

automatic issue mangement
– “Adversarial Resilience

Learning”

Kotzur, Leander, et al. “A modeler’s guide to handle complexity in
energy systems optimization.” Advances in Applied Energy 4 (2021):
100063.
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Adversarial Resilience Learning
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Observation Observation

Reward / Objective Reward / Objective

Seite 34
2025-03-10

General, Learned, and Verified: What the Future of Learning Agents in Power Grids Could Be —
Eric MSP Veith <eric.veith@uol.de> — Adversarial Resilience Learning

mailto:eric.veith@uol.de


Adversarial Resilience Learning
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ARL Agent Interaction
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ARL Agent Can Discover Attacks

– Attack on voltage level
– Attacker controls Q feed-in
– Known attack: Oscillating

behavior
– ARL agent indepently

disovers attack, but also finds
variant
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Veith, Wellßow, and Uslar [4]
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Transactive Energy Can Be Gamed

– Economic and control
techniques, based on
market standard values

– There is no “sound” market
design yet than cannot be
gamed

– Worse yet: Agents can find
weaknesses & gain market
dominance without system
knowledge
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Agents learn to “game” local energy markets
Wolgast, Veith, and Nieße [6]
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Multi-Agent Autocurricula

– ARL is an autocurriculum setup
– Indepentently known & verified

to work
– Example Setup: Two groups of

agents play hide and seek
– No domain information; agents

learn strategies and tool use
independently

– Result: Agents learn to exploit
bugs in the underlying game
engine

– Holes in walls
– Sliding boxes
– Edge/corner jumps
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Autocurricula Helpful in Theory

– DRL agents collect initial samples from random actions
– However, random actions over correlated actuators lead to

convolution problem, i. e., if X , Y ∼ U , then

fZ (z) =

∫ ∞

−∞
fX (x)fY (z − x) dx , (6)

which is a triangle distribution
– Equally, consider SAC’s entropy maximization,

π∗ = argmax
π

E
τ∼π

 ∞∑
t=0

γt

(
R(st , at , st+1) + αH (π(·|st))︸ ︷︷ ︸

Entropy term

)
(7)

– . . . obviously, a “push” is required
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Autocurricula Helpful in Theory II

1. Formally, DRL approximates the unknown environment distribution p with q, i. e.,

minimize KL(p, q)
subject to q (8)

2. Learn a policy to exploit q, πΩ

3. (Single agent: get stuck in local optimum because p is mostly unknown because of
missing sample data)

4. Adversary agent: Observe p as influenced by πΩ

5. RA(st ∼ p) = −RΩ(st ∼ p), therefore πA=̂− πΩ

6. Result: agents observe adversarial sampels from the “other end” of p’s spectrum
7. Agents try to counter adverse effects: efficent state/action space exploration
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. . . and in Practice
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ARL Works

To summarize. . .
– ARL works for finding attack vectors (“easy”)
– ARL defender learn resilient control (“not quite so easy, but still. . . ”)
– ARL agents learn faster & more robust strategies through the autocurriculum setup

(“proove me, I’m only circumstantial evidence!”)
– ARL defender agents can control modern power grids (“ha-ha, as if that would be

acceptable. . . ”)
– There is still a lot missing:

– Behavior guarantees
– Adhere to constraints (rulesets)
– Learn from existing domain knowledge
– Adapt during production use (not just retraining)
– . . .
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ARL Agent Architecture

– Learn from sensor inputs (policy: DRL)
– Deploy & forget, don’t design policy

networks: Neuroevolution
– Explainability
– Learn from domain knowledge
– Follow rules, if given

<<component>>
Rules-Policy Discriminator

<<component>>
Environment

<<component>>
Rules Repo

<<component>>
Adaptive Policy

<<component>>
Neuroevolution

<<component>>
XRL Rules Extractor

<<component>>
Rule Monitor

<<component>>
Rule-based Policy

User Input

Decision

Sensor Actuator

User Rules

Rule

Replay BufferParameters
Rules Query
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Learning from Domain Knowledge

Example: Misuse Cases
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Trajectories from (Mis-) Use Cases

– Annotate UML diagrams to allow sampling; construct:
– Experiment file
– State machine from transitions

Mtg = (Q,Σ, δ, q0,F )

with
(q, ({cq} ∈ ActuatorSetpoints,

{iq} ∈ TimeStepIntervals)) ∈ Q

(i ∈ Q, n ∈ Q, {sc} ∈ StepConstraints) ∈ δ

(9)

Relevant properties:
– Non-determinism
– State/actuator constraints cq (think Gymnasium spaces)
– Time step intervals (sync to simulation semantics)
– Constrained steps (e. g., grid codes)
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Combined AWAC and State Machine Sampling

Initialize Simulation S
State Machine Mtg = (Q,Σ, δ, s0,F )
maximum_steps ← x
for j ≤ x do

s ← S .state
a← {c} ∈ (Mtg .state, cMtg .state) ∈ QMtg

r ← R(a)
s ′ ← S .step(a)
db ← db ∪ {(s, a, s ′, r)}
advance(Mtg )
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Combined AWAC and State Machine Sampling II

Dataset D = {(s, a, s’, r)j} ∼ db
Initialize buffer β = D
Initialize πθ,Qϕ

for iteration i = 1, 2, . . . , n do
Sample batch (s, a, s ′, r) ∼ β
y = R(s, a) + γEs′,a′ [Qϕk−1(s

′, a′)]

ϕ← argminϕ ED [Qϕ(s, a)− y2]

θ ← argmaxθ Es,a∼β [log πθ(a|s) exp( 1
λ
Aπk (s, a))]

if i > num_offline_steps then
τ1, . . . , τK ∼ pπθ (τ)
β ← β

⋃
{τ1, . . . , τK}
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Explanation goals

– Motivation: No trust without explanation of learned strategies of agents
– Idea: Use Decision Trees (DTs) with extraction of rulesets for explanation

– DTs are transparent and somewhat interpretable
– They can be trained directly (no need for black-box Deep Neural Network (DNN) models)
– But DNNs are better regularized, which increases trainability [2]

– Conflicting goals:
– Construction of powerful (Deep Reinforcment Learning (RL) (RL)) learning system
– (Post-hoc) Explainability with comprehensible model (e. g. DTs)
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Learned Policy Explanation

– Equivalent transformation of efficient-learnable Feed-Forward DNNs (DNNs) into
compressed DTs

→
X0 − X1 > 0

−X0 + X1 > 0

Y = 0 Y = −X0 + X1

Y = X0 − X1

0

0 1

1

– NN2EQCDT algorithm heavily relies on equivalence description of DNNs and DTs [1],
but still addressed research gaps to better use it for explainability:

– Transformation algorithm and actual implementation proposed for PyTorch models
– Exponential growth is addressed by lossless pruning
– Dynamic compression reduces computation time significantly and may reduce inference time
– Option to directly include global constraints for further pruning
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NN2EQCDT algorithm

Finally:
– Converting final rules to

expressions
– Pruning the (temporary)

UNSAT nodes
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Effective weight matrix calculation

– Using right-handed linear
transformation with bias

– Tailored to ReLU(-like)
activation functions (e.g. ReLU,
PReLU, LeakyReLU)
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XOR model: DT Construction

Finally:
– Simple example of an

DT representing an
XOR function

– Construction of DT
using calculated
effective weight
matrices
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XOR model: DT Pruning

X0 − X1 > 0

−X0 + X1 > 0

Y = 0 Y = −X0 + X1

Y = X0 − X1

0

0 1

1

Figure: Simple pruning example

Pruning UNSAT node by
– remove parent and
– connecting sibling subgraph to

parent of parent
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Comparison of construction methods

9 9.5 10 10.5 11 time [s]

Figure: Boxplot (n = 30) for the computation time of the NN2EQCDT algorithm for the simple model

Table: Comparison of results or calculations for the construction of a DT from the simple model without
and with compression of the NN2EQCDT algorithm

Pruning #nodes Computation time
□ 262143 > 1.5h
✓□ 83 9.75s

– Pruning ratio (amount of nodes) of 99.97%
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Applications in Practice

* Feeder 2 is not further
relevant in the scenario

*

*
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Co-Existence of MAS and DRL

– Hybrid systems out of focus, mostly either DRL, or MARL, or MAS.
– However, any agent isn’t alone in its environment!

– Game-theoretical models focus on a form of interaction (cooperation, competition, conflict,
. . . ), but not on co-existence

– Underrated in literature: controller conflicts
– Many possible hybrid architectures, e. g.,

– Hierarchies
– Imitation Learning
– Safeguarding (research gap!)
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“Cover me:” A Practical Example for Safeguarding MAS

1. Observe MAS, imitation learn nominal
behavior

2. For every t , internally propose actions
3. Check: MAS action proposal, ARL agent

proposal against world model, note
projected future states & rewards

4. Update trust by averaging reward over
an LTI function

5. Apply actions from proposal with
highest trust value

6. Observe state, learn from all three
transitions

<<component>>
Rules-Policy Discriminator

<<component>>
Environment

<<component>>
Replay Buffer

<<component>>
DRL Policy

<<component>>
External Policy

<<component>>
World Model

+module
+value : float = 0.0

<<component>>
Trust Score

1..*

1 Evaluate

Voltage Controller

MAS

Store

Decision

Query

Trajectory
Store/Query

ActuatorSensor

03:00
Jul 14, 2020

06:00 09:00 12:00 15:00 18:00 21:00
−40

−20

0

20

40

60

80

03:00
Jul 14, 2020

06:00 09:00 12:00 15:00 18:00 21:00

0.5

0.6

0.7

0.8

0.9

Agent Utility
Failure
Failure with ARL Backup
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Deep Reinforcement Learning is not the Only Answer

The state of the art has many nice features:
– Offline learning (learning from domain knowledge)
– Imitation learning (learn existing control strategies by example)
– Model-based and model-free DRL
– eXplainable Reinforcement Learning to explain each action with low computational

overhead
... however, this agent is still far from being safe.
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“Good” Agents Fail to Apply Learned Strategies

Flip of feeder switch Agent forgets Q control strategy
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Catastrophic Forgetting on Topology Changes

A simple topology change screws the agent completely. Countermeasures:
1. Train the agent on as many scenarios as possible.
2. Verify the DRL agent.
3. Create a Foundation Model for actions
4. . . . Combine all of the above!
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Training Strategy

– Take the autocurriculum approach to spawning
environments

– Two adversaries: One “spawner” and n “workers”
– Operator agent trains on all of them (traditional

multi-worker)
– Adversary spawns environments based on inverted reward

and entropy R−1(s) ◦ H(s)
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Latent Spaces

– Core idea: Use Graph Neural Networks to learn
representations of underlying grids

– Graph space is our feature space: X = G(A,K)

– Train encoder for latent space representation of all Gi ,
where i is an environment instance we encountered:
γ : X 7→ L

– Use transformer to work directly on latent space
– Result: A foundation model for actions
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And Verification. . . ?

– Alongside the Foundation Action Model, train a foundation model for contraints:
Foundation Constraints Model

– Use the Foundation Constraints Model for N-step verification of trajectories to provide
safety guarantees
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A Lookout

– The journey towards highly automated grid operation & extension has just begun.
– AI can help testing future grids, be part of certification processes
– AI itself needs safeguards: Rulesets, explainability, and eventually certification, too.

(Insurance. . . ?)
– We will see sophisticated agent architectures in the near future.
– If you want to see interesting code, head over to http://palaestr.ai or shout out to
eric.veith@uol.de!
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