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1. Introduction
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Back ground and Goal

@ Data can originate from multiple sources, each involving different
subsets of variables.

Sparse data problems (e.g., data size for a model of 40 binary
variables)

Graphical Models from different sources of data can be combined.

Goal: Find conditions sufficient for graph combination

This work proposes some sufficient conditions for graph combination

Sung-Ho Kim KAIST INNOV 2025 Structure Compatibility September 30, 2025 5/34



2. Graphs and Markov Properties
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Graph Basics(1/2)

e Graph G =(V,E): Vis aset of nodes, E C V x V is a set of edges.
@ Induced subgraph: Ga = (A,EN (A x A)) for AC V.

08
@O—®
() 6 (b) Ga (c) Ga

Figure 1: Two types of subgraph of G on A = {1,2,3}.
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Graph basics(2/2)

e Separation: A and B are separated by S if all the paths from A to B

pass through S.
@ 6'9
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Markov Properties(1/5)

o Let X ={Xy,...,X,} be random variables with joint distribution P.
e For A= {1,2}, we will write X4 for (X1, X2).
o Let V =1{1,2,---,n}. For two random vectors X4 and Xg with

A,B C V and AN B = (), we say that X4 and Xg are stochastically
independent if

P(xauB) = fi(xa)f2(xB).

o Now suppose AN B # () and let AN B = C. We say that X4 and
Xp\ 4 are conditionally independent given Xc (or Xa\p L Xp\a|Xc) if

P(xa\8; xg\alxc) = f3(xa\B)fa(xp\a)-
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Markov Properties(2/5)

@ P is globally Markov w.r.t. G if:
Xa L Xg | Xs whenever A and B are separated by S in G.

e M(G): A set of distributions globally Markov to G.

e G is a perfect map of P if P € M(G) and all conditional
independencies in P are encoded in G.
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Markov Properties(3/5)

(a) Gt

Pi(x1,- -+, X6) = gi(x1, x2)g2(x1, x3)g3(x2, xa) g6 (x3, xa)g7(x3, X5)
% g8(xa, X6) 8o (X5, X6 ).

Pi(x1,--- ,x6|x3,%6) = g1(x1,x2)g(x1,x3)g3(x2, xa)g6(x3, Xa)g7(x3, X5)
x gs(xa, x6) 8o (X5, X6)/ P(x3, X6).
= hi(x1,x2)ha(x2, xa) h3(xs5)
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Markov Properties(4/5)

Po(x1,- -+, Xe) = gi(x1,x2)g2(x1, x3)g3(x2, Xa) g4 (X3, Xa, X5)
X g5(Xa, X5, X6)-

Po(xi, -+ ,X6|x3,%6) = g1(x1,x2)&(x1,x3)g3(x2, Xa)&a(x3, Xa, x5)
X g5(xa, x5, x6)/ P(x3, X6)-
= hi(x1, x2)g3(x2, xa) ha(xa, x5)
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Markov Properties(5/5)

O-6-6® O O6
bao botd barts
(c) G (d) G (e) Gs

Figure 2: Graphs of 6 nodes

Pi(x1, - ,x6) = gi(x1,x2)g(x1,x3)83(x2, xa)86(X3, Xa)g7(x3, X5)
x gs(xa, x6)8o (X5, X6)-
Po(xi, -+ ,x6) = gi(x1,x2)82(x1,x3)g3(x2, xa)ga(x3, Xa, X5)&5(xa, X5, X6)-
P3(x1, -+ ,x6) = &u1(x1,x2)8(x1,x3)83(x2, xa)g10(X3, Xa, X5, X )-
==> @ G; is a perfect map of P; for i = 1,2,3.

@ P, Py, and P are all in M(Gs).
@ Pi, Py arein M(Gy). P1 € M(Gy).
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3. Combined model structure
and Markovian combination
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Markovian Subgraphs

e Given G = (V,E) and A C V, define the Markovian subgraph
GﬁA = (A, EfA)Z
(i,j) € E_a if there exists a (V \ A)-path between i and j in G.

@ Independence properties of marginal distribution P4 are captured by
Ga.

o If P is globally Markov w.r.t. G, then P4 is globally Markov w.r.t.
G_a. In other words, if P € M(G), then Pa € M(G_,).

(a) 6 (b) Ga (c) Ga
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Combined model structure

Definition 1

Given two graphs Gi = (V1, E1) and Gy = (Va, Ez), then we say that a
graph G = (V,E) is a combined model structure (CMS) of Gy and G, if
the following conditions (called CMS conditions) hold:

Q@ V-=ViuV,
Q G_\/1 = G1 and G_\/2 == G2.
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d) G (e) G2 (f) GCMS GCMS

Figure 3: Two CMS's of G; and G. GCMS is a maximal CMS.
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2 B o2 o

(b) G (c) GCMS GCMS

Figure 4: Two maximal CMS's of G; and G,.
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Union graph

For an edge set E of a graph and a node set A, we define E4 as

Ea = {(u,v)|(u,v) € E and both u and v are in A}.

Definition 2

Given two graphs Gy = (V1, E1) and Gy = (Va, Ep), let C = Vi N Va. then
the union graph G = (V/, E) of the two graphs is defined such that the
following holds:

Q@ V=VuV,,
Q@ E=-EFKHUEBEU {(U, V)|U ev \ Vo, veV, \ Vl} \ ((E]_)CA(E2)C).
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(a) Gt (b) G2 (c) Union(Gi, G2)

Figure 5: Union graph of G; and G;.
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(b) Union(G, Gy) (c) G* (d) G2
e) Gz (f) G/3 G/4 G/S

Figure 6: The union graph of G; and G; in Figure 8 is in panel (a). The
subgraphs of G’ to be examined for separateness are in (c), (d), (f), (g), and (h).
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Example of Graph Combination
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Figure 7: Graphs G; and G, are merged
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Structure Compatibility

4. Structure Compatibility
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Definition 1 (Structure Compatibility)

Two undirected graphs G; and G are said to be structure compatible if
there exists a graph G such that G; and G are Markovian subgraphs of G.

Two undirected graphs Gi and Gy are structure compatible if and only if a
CMS of Gy and Gy exists.

v,
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Example of five random variables

Table 1: Examples of probability tables for five Bernoulli random variables
X17X27X33X47 and X5-

Py
X; 0 1
X5 0 1 0 1
X1 0 1 0 1 0 1 0 1

Xa 0 | 0.010 | 0.010 | 0.050 | 0.090 | 0.020 | 0.020 | 0.030 | 0.054
1| 0.040 | 0.080 | 0.075 | 0.095 | 0.040 | 0.080 | 0.135 | 0.171
Total | 0.050 | 0.090 | 0.125 | 0.185 | 0.060 | 0.100 | 0.165 | 0.225

P>
X3 0 1
X2 0 1 0 1
X1 0 1 0 1 0 1 0 1

Xs 0 | 0.020 | 0.020 | 0.080 | 0.080 | 0.030 | 0.030 | 0.120 | 0.120
1] 0.030 | 0.070 | 0.045 | 0.105 | 0.030 | 0.070 | 0.045 | 0.105
Total | 0.050 | 0.090 | 0.125 | 0.185 | 0.060 | 0.100 | 0.165 | 0.225
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Model structures for the Bernoulli variables in Table 1

oo
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> G

(a) G (b) G

Figure 8: Model structures of P; and P, in the index order
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5. Main result
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Rule 1: Discrepant common test

Theorem 2 (Discrepant common test)

For graphs Gy and Gy with C = V4 N Vy, if (G1)_c # (G2)_c, then
GP G =0.
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Example of Rule 1

(h) (Gi)c

Figure 9: Two graphs, G; and G}, satisfying the condition of Theorem 2. For a
graph G, its Markovian subgraphs G; and G, are obtained upon the node sets
A={1,2,---,7} and B ={3,4,--- ,8} respectively. Edge (4,5) is removed
from G; into G and edge (6,8) is removed from G, into Gj. The removed edges
are dashed in Gf and Gj. For the set C = AN B, (G{).c # (G})._c.
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Rule 2: Union graph test

Theorem 3 (Union Graph Test)

Let G" = union( Gy, Gp) and V; = V(G;) for i = 1,2. If there exists i such
that G; Z (Gu)_\/i, then Gy @ Gy = (.
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Example of Rule 2

(d) G4 (e) G&

Figure 10: An example where a Markovian subgraph of union(G;, G}) does
contain none of G| and G} as a subgraph. G] and G} are carried over from Figure
9 with dashed edges erased. G’4 and G'f are Markovian subgraphs of G’ upon A
and B respectively. Note that G{ Z G'}.
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6. Conclusion

Structure combination is a way of learning model structures based on
a set of marginal model structures.

Markov properties play a key role in structure compatibility test.

In combining marginal model structures, checking structure
compatibility will save us time by guiding us avoid unnecessary
combining procedures.

More test rules for checking structure compatibility are to be sought
for.
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