

INNOV 2025, Sep. 28- Oct. 2, 2025. Lisbon, Portugal

A Note on Structure Compatibility for Large Scale Structure Learning

Sung-Ho Kim Korea Advanced Institute of Science and Technology (KAIST) email: sungkim@kaist.ac.kr

KAIST

September 30, 2025

Short Biography

- Current Position: Professor Emeritus of Statistics, Dept of Mathematical Sciences, Korea Advanced Institute of Science and Technology(KAIST).
 - Education: B.Sc. in Math (Seoul National Univ, 1980, S. Korea)/ Ph.D. in Statistics (Carnegie Mellon University, U.S.A, 1989)
- Research fields: Multivariate Analysis, Graphical modelling, Structure learning, Structure combination, Large scale modelling
- Professional experience: Educational Testing Service (research scientist, 1989-1993, USA.), KAIST (Professor, since 1993, S. Korea).
- Professional membership: International Statistical Institute, Elected member, Since Jan. 2003.
- Professional activity: Over 70 research articles in peer-reviewed journals, over 30 invited talks in conferences and universities, and over 200 evaluations of research articles.

Outline

- Introduction
- ② Graphs and Markov Properties
- 3 Combined model structure and Markovian combination
- 4 Compatibility
- Main result
- 6 Conclusion

1. Introduction

Back ground and Goal

- Data can originate from multiple sources, each involving different subsets of variables.
- Sparse data problems (e.g., data size for a model of 40 binary variables)
- Graphical Models from different sources of data can be combined.
- Goal: Find conditions sufficient for graph combination
- This work proposes some sufficient conditions for graph combination

2. Graphs and Markov Properties

Graph Basics(1/2)

- Graph G = (V, E): V is a set of nodes, $E \subset V \times V$ is a set of edges.
- Induced subgraph: $G_A = (A, E \cap (A \times A))$ for $A \subset V$.

Figure 1: Two types of subgraph of G on $A = \{1, 2, 3\}$.

Graph basics(2/2)

• Separation: A and B are separated by S if all the paths from A to B pass through S.

Markov Properties (1/5)

- Let $X = \{X_1, \dots, X_n\}$ be random variables with joint distribution P.
- For $A = \{1, 2\}$, we will write X_A for (X_1, X_2) .
- Let $V = \{1, 2, \dots, n\}$. For two random vectors X_A and X_B with $A, B \subseteq V$ and $A \cap B = \emptyset$, we say that X_A and X_B are stochastically independent if

$$P(x_{A\cup B})=f_1(x_A)f_2(x_B).$$

• Now suppose $A \cap B \neq \emptyset$ and let $A \cap B = C$. We say that $X_{A \setminus B}$ and $X_{B \setminus A}$ are conditionally independent given X_C (or $X_{A \setminus B} \perp X_{B \setminus A} | X_C$) if

$$P(x_{A\setminus B}, x_{B\setminus A}|x_C) = f_3(x_{A\setminus B})f_4(x_{B\setminus A}).$$

Markov Properties(2/5)

- P is globally Markov w.r.t. G if: $X_A \perp X_B \mid X_S$ whenever A and B are separated by S in G.
- M(G): A set of distributions globally Markov to G.
- G is a perfect map of P if $P \in M(G)$ and all conditional independencies in P are encoded in G.

Markov Properties(3/5)

$$P_1(x_1, \dots, x_6) = g_1(x_1, x_2)g_2(x_1, x_3)g_3(x_2, x_4)g_6(x_3, x_4)g_7(x_3, x_5) \times g_8(x_4, x_6)g_9(x_5, x_6).$$

$$P_{1}(x_{1}, \dots, x_{6}|x_{3}, x_{6}) = g_{1}(x_{1}, x_{2})g_{2}(x_{1}, x_{3})g_{3}(x_{2}, x_{4})g_{6}(x_{3}, x_{4})g_{7}(x_{3}, x_{5}) \\ \times g_{3}(x_{4}, x_{6})g_{9}(x_{5}, x_{6})/P(x_{3}, x_{6}). \\ = h_{1}(x_{1}, x_{2})h_{2}(x_{2}, x_{4})h_{3}(x_{5})$$

Markov Properties (4/5)

$$P_2(x_1, \dots, x_6) = g_1(x_1, x_2)g_2(x_1, x_3)g_3(x_2, x_4)g_4(x_3, x_4, x_5) \times g_5(x_4, x_5, x_6).$$

$$P_{2}(x_{1}, \dots, x_{6}|x_{3}, x_{6}) = g_{1}(x_{1}, x_{2})g_{2}(x_{1}, x_{3})g_{3}(x_{2}, x_{4})g_{4}(x_{3}, x_{4}, x_{5}) \times g_{5}(x_{4}, x_{5}, x_{6})/P(x_{3}, x_{6}).$$

$$= h_{1}(x_{1}, x_{2})g_{3}(x_{2}, x_{4})h_{4}(x_{4}, x_{5})$$

Markov Properties(5/5)

Figure 2: Graphs of 6 nodes

$$P_{1}(x_{1}, \dots, x_{6}) = g_{1}(x_{1}, x_{2})g_{2}(x_{1}, x_{3})g_{3}(x_{2}, x_{4})g_{6}(x_{3}, x_{4})g_{7}(x_{3}, x_{5}) \\ \times g_{8}(x_{4}, x_{6})g_{9}(x_{5}, x_{6}).$$

$$P_{2}(x_{1}, \dots, x_{6}) = g_{1}(x_{1}, x_{2})g_{2}(x_{1}, x_{3})g_{3}(x_{2}, x_{4})g_{4}(x_{3}, x_{4}, x_{5})g_{5}(x_{4}, x_{5}, x_{6}).$$

$$P_{3}(x_{1}, \dots, x_{6}) = g_{1}(x_{1}, x_{2})g_{2}(x_{1}, x_{3})g_{3}(x_{2}, x_{4})g_{10}(x_{3}, x_{4}, x_{5}, x_{6}).$$

==>

- **①** G_i is a perfect map of P_i for i = 1, 2, 3.
- P_1, P_2 , and P_3 are all in $M(G_3)$.
- **3** P_1, P_2 are in $M(G_2)$. $P_1 \in M(G_1)$.

3. Combined model structure and Markovian combination

Markovian Subgraphs

- Given G = (V, E) and $A \subset V$, define the Markovian subgraph $G_A = (A, E_A)$: $(i,j) \in E_A$ if there exists a $(V \setminus A)$ -path between i and j in G.
- Independence properties of marginal distribution P_A are captured by $G_{_A}$.
- If P is globally Markov w.r.t. G, then P_A is globally Markov w.r.t. G_A . In other words, if $P \in M(G)$, then $P_A \in M(G_A)$.

Combined model structure

Definition 1

Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, then we say that a graph G = (V, E) is a combined model structure (CMS) of G_1 and G_2 if the following conditions (called CMS conditions) hold:

- $V = V_1 \cup V_2$,
- ② $G_{V_1} = G_1$ and $G_{V_2} = G_2$.

Figure 3: Two CMS's of G_1 and G_2 . G_{CMS}^1 is a maximal CMS.

Figure 4: Two maximal CMS's of G_1 and G_2 .

Union graph

For an edge set E of a graph and a node set A, we define E_A as

$$E_A = \{(u, v) | (u, v) \in E \text{ and both } u \text{ and } v \text{ are in } A\}.$$

Definition 2

Given two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$, let $C=V_1\cap V_2$. then the union graph G=(V,E) of the two graphs is defined such that the following holds:

- $V = V_1 \cup V_2$,

Figure 5: Union graph of G_1 and G_2 .

Figure 6: The union graph of G_1 and G_2 in Figure 8 is in panel (a). The subgraphs of G' to be examined for separateness are in (c), (d), (f), (g), and (h).

Example of Graph Combination

Figure 7: Graphs G_1 and G_2 are merged

Structure Compatibility

4. Structure Compatibility

Definition 1 (Structure Compatibility)

Two undirected graphs G_1 and G_2 are said to be structure compatible if there exists a graph G such that G_1 and G_2 are Markovian subgraphs of G.

Theorem 1

Two undirected graphs G_1 and G_2 are structure compatible if and only if a CMS of G_1 and G_2 exists.

Example of five random variables

Table 1: Examples of probability tables for five Bernoulli random variables X_1, X_2, X_3, X_4 , and X_5 .

P_1											
	X_3	0				1					
	X_2	0		1		0		1			
	X_1	0	1	0	1	0	1	0	1		
X_4	0	0.010	0.010	0.050	0.090	0.020	0.020	0.030	0.054		
	1	0.040	0.080	0.075	0.095	0.040	0.080	0.135	0.171		
Total		0.050	0.090	0.125	0.185	0.060	0.100	0.165	0.225		

r_2											
	<i>X</i> ₃	0				1					
	X_2	0		1		0		1			
	X_1	0	1	0	1	0	1	0	1		
X_5	0	0.020	0.020	0.080	0.080	0.030	0.030	0.120	0.120		
	1	0.030	0.070	0.045	0.105	0.030	0.070	0.045	0.105		
Total		0.050	0.090	0.125	0.185	0.060	0.100	0.165	0.225		

D

Model structures for the Bernoulli variables in Table 1

Figure 8: Model structures of P_1 and P_2 in the index order

5. Main result

Rule 1: Discrepant common test

Theorem 2 (Discrepant common test)

For graphs G_1 and G_2 with $C = V_1 \cap V_2$, if $(G_1)_{_C} \neq (G_2)_{_C}$, then $G_1 \bigoplus G_2 = \emptyset$.

Example of Rule 1

Figure 9: Two graphs, G_1' and G_2' , satisfying the condition of Theorem 2. For a graph G, its Markovian subgraphs G_1 and G_2 are obtained upon the node sets $A=\{1,2,\cdots,7\}$ and $B=\{3,4,\cdots,8\}$ respectively. Edge (4,5) is removed from G_1 into G_1' and edge (6,8) is removed from G_2 into G_2' . The removed edges are dashed in G_1' and G_2' . For the set $C=A\cap B$, $(G_1')_{-C}\neq (G_2')_{-C}$.

Rule 2: Union graph test

Theorem 3 (Union Graph Test)

Let $G^u = union(G_1, G_2)$ and $V_i = V(G_i)$ for i = 1, 2. If there exists i such that $G_i \nsubseteq (G^u)_{-V_i}$, then $G_1 \bigoplus G_2 = \emptyset$.

Example of Rule 2

Figure 10: An example where a Markovian subgraph of union (G_1', G_2') does contain none of G_1' and G_2' as a subgraph. G_1' and G_2' are carried over from Figure 9 with dashed edges erased. $G_{_A}'^u$ and $G_{_B}'^u$ are Markovian subgraphs of $G_1'^u$ upon A and B respectively. Note that $G_1' \not\subseteq G_A''$.

6. Conclusion

- Structure combination is a way of learning model structures based on a set of marginal model structures.
- 2 Markov properties play a key role in structure compatibility test.
- In combining marginal model structures, checking structure compatibility will save us time by guiding us avoid unnecessary combining procedures.
- More test rules for checking structure compatibility are to be sought for.

Selected References

- Dawid, A.P. and Lauritzen, S.L. (1993) Hyper Markov laws in the statistical analysis of decomposable graphical models, *Annals of Statistics* 21: 1272–1317.
- Wim, S. (2006) Properties of markovian subgraphs of a decomposable graph, MICAI 2006, Lecture Notes in Artificial Intelligence, LNAI 4293. Advances in Artificial Intelligence. Alexander Gelbukh and Carlos Alberto Reyes-Garcia (Eds.), pp. 15-26.
- Nim, G. and Kim, S. (2020) Marginal information for structure learning, *Statistics and Computing* 30(2): 331-349.
- Kim, G., Lee, N., and Kim, S. (2025) A sequential approach for combining model structures of undirected graphical models, Submitted.
- Massa, M.S. and Lauritzen, S.L. (2010) Combining statistical models, *Contemporary Mathematics* 516: 239-259.

Thanks a lot for Your Attention!