

ICSEA 2025

BARRIERS AND ENABLERS OF AI ADOPTION IN SOFTWARE TESTING:

A Secondary Study

Katja Karhu, Junior Researcher, LUT University, Finland – katja.karhu@lut.fi Jussi Kasurinen, Associate Professor, LUT University, Finland – jussi.kasurinen@lut.fi

KATJA KARHU

- >> Doctoral student in LUT University
- >> M. Sc in Information Technology in 2007 from LUT University
 - M. Sc. Thesis "Knowledge Transfer in Software Testing Organizations" (original Finnish title: "Tietämyksen välittäminen ohjelmistotestausorganisaatioissa")
- >> Professional experience
 - >> 2024- Junior Researcher (doctoral student) at LUT University
 - >> 2024 Part-time lecturer of Object-Oriented Programming at LUT University
 - >> 2022-2024 Software Architect and Product Owner at Procountor
 - >> 2020-2022 Senior Software Developer at Procountor
 - >> 2012-2020 Software Developer at Procountor
- >> What did I actually do:
 - >> Agile software development of financial management systems with Java
 - >> Unit testing and integration testing
 - Acted as a Product Owner and Scrum Master

www.linkedin.com/in/katjakarhu

RESEARCH INTERESTS

- >> AI in software testing
 - >> How are companies utilizing AI in software testing in practice?
 - >> How will Al change software testing work in software development?
- >> Why did I choose this topic?
 - >> In early 2024 the company I worked in, Al adoption in software testing started to come up in conversations
 - >> There was a not lot of concrete information available about Al adoption in practice
- >> Qualitative research methodology
 - Interviews
 - >> Thematic analysis

BACKGROUND AND MOTIVATION

- >> We were interested in empirical studies made in a real-world industry context
 - Data collected from testing specialists
 - >> Excluded e.g. experiments
- >> Why a literature survey with this specific focus?
 - >> Research interests!
 - Nguyen at al (2023, 2025) conducted an extensive literature review in 2023, and found that
 - most of the existing studies on AI in software quality assurance are "experimental studies and thus do not take into consideration the industrial context".
 - "how GenAl models deal with real-world software quality issues remains a mystery"
 - >> We decided to see if the situation had changed, and tried to find all recent (2020 onwards) empirical studies on AI in software testing, with that real-world context

A. Nguyen-Duc et al., "Generative Artificial Intelligence for Software Engineering A Research Agenda," preprint, Oct. 2023. DOI: 10.48550/arXiv.2310.18648.

A. Nguyen-Duc et al., "Generative Artificial Intelligence for Software Engineering A Research Agenda," Software: Practice and Experience, pp. 1–38, Jun. 2025. DOI: 10.1002/spe. 70005.

RESEARCH QUESTIONS

- >> We had to split the reporting of the results into two studies
 - >> Study 1: Expectations vs Reality A Secondary Study in Al Adoption in Software Testing
 - RQ1: What kind of studies have been made in the industrial or business context regarding AI adoption in software testing?
 - RQ2: How is AI utilized in software testing in the industry?
 - >>> Study 2: Barriers and Enablers of Al Adoption in Software Testing: A Secondary Study
 - RQ1: What are the issues that prevent or hinder Al adoption in software testing?
 - RQ2: What are the enablers behind successful AI adoption in software testing?

SYSTEMATIC MAPPING STUDY

- >> We found a total of 17 studies (peer-reviewed, theses, and grey literature) that matched our criteria
 - Google Scholar
 - Scopus
- >> Data collection was done during October and November 2024
 - >> Most of the studies(10) were published in 2024
 - >> Potential limitation: there are most likely newer studies that would fit our criteria
- >> Since the number of studies was quite small, a detailed qualitative analysis was possible

THEMATIC ANALYSIS

- >> Reflexive thematic analysis
 - >> Non-positivist approach: coding is an interpretive practice, where researcher subjectivity is embraced as a resource (Braun and Clarke, 2023)
 - Personal view of AI: a hopeful sceptic
 - A pragmatic approach in analysis wanted to find the concrete information about AI adoption (actual benefits, actual use cases, barriers and enablers of adoption, etc)
 - Some background knowledge on software testing (from research and in SW development context)
- >> A theme is a concept that captures important patterned information and insights about the data, related to the research question (Braun and Clarke, 2006)

MAIN THEME: BARRIERS AND ENABLERS

- Barriers and enablers can be related to, for example:
 - Management
 - Processes
 - >> Human resources
 - >> Tools
 - Data
 - >> External barriers and enablers
 - Legislation is an important barrier/enabler that is not mentioned here: there was not enough information about it in the data
- Barriers are not always bad and enablers good

Category	Barriers	Enablers
Management	Lack of usefulness/produced value [1][20][24][26][27]	Marketing AI benefits [1][26]
	Requires significant investments [1][27]	Leadership support [14][16][17][25]
	Risk aversion [1][21][27]	Investments in technology [14][16][17][26]
	Lack of time and resources [1][21][24][25][27]	Investments in skill development [26]
		Outsourcing [27]
		Hiring new employees [27]
Processes	Incompatibility with current processes [1][13][21]	Evaluation of current processes [1][28]
	Strict IT policies [25]	Change management [25]
	Poor internal communication [25]	AI roadmap [27]
Human resources	AI skill gap [1][20][21][24][26][27]	Personnel training [16][24]–[27]
	Lack of trust in AI [13][21][23]–[25]	Internal communication [21][25]
	Resistance to change [1][25]	Collaborative experimentation and research [1]
		Guidelines for working with AI [20]–[22][25]
Tools	Difficulties in finding and selecting tools [20][24]	Explainable AI (XAI) [13][21][28]
	Lack of transparency [13][21][28]	Monitoring and reviewing [21]
	Incompatibility with legacy systems [1][21][26]	Building test automation first [1]
	Poor usability of tools [1]	AI tool documentation [4]
	Unreliability (e.g., hallucination and bias) [21][23]	Company's internal AI tools [25]
	Tool pricing [20]	Open-source AI tools [20]
	Lack of domain knowledge [20]	Formal screening process for AI tools [25]
Data	Lack of training data [1][13][20][21][23][25]–[28]	Purposefully collecting data for training [1][26]
	Data privacy and security issues [24][27]	Creating training datasets [20][26]
		Tools for data cleaning and pre-processing [27]
		Reliable data sources [27]
		Proper training of AI with high quality data [20][27][28
External	Lack of reference implementations or standards [1][21]	Education system (e.g., university level) [27]
		Collaboration with other organizations [27]
		Certifications [16][21][26]

TABLE II. BARRIERS AND ENABLERS PER CATEGORY FROM EARLIER LITERATURE

BARRIERS AND ENABLERS

- >> Lack of usefulness or produced value was reported in several studies
 - >> Relates to also to the lack of reference implementations or standards
- >> Al adoption requires big initial investments
 - >> Return-of-investment has not yet manifested, because Al adoption is still in it's early stages
- >> The why adopt AI if benefits are vague and cost is high?
 - >> Motivations for new technology adoption (Gulzar and Smolander, 2024)
 - Market dynamics, internal imperatives, technological advancement, social influence, economic considerations, operational and strategic improvements
 - Al hype as the reason for adoption?
- >> Potential enablers
 - Marketing Al benefits -> risk of increasing hype
 - >> Collaboration with other organizations could help identify and develop AI solutions for testing

BARRIERS AND ENABLERS

- >> Lack of time and resources
 - >> Daily work consumes all time and resources, no time for learning
- >> Al skill gap
 - >> even though LLMs have made AI more easily accessible, AI adoption still required specialized knowledge
- >> Lack of trust in AI (also relates to unreliability of AI tools, resistance to change)
 - >> LLMs are not ideal for tasks that require reliability or determinism
 - Data privacy and security issues
- >> Potential enablers:
 - >> Leadership support
 - >> Investments in skill development
 - >> Collaborative experimentation and research
 - Personnel training
 - Guidelines

BARRIERS AND ENABLERS

- >> New tools affect processes
 - >> Incompatibility with current processes was mentioned as a problem
 - >> Potential enablers:
 - Evaluation of current processes -> could we do things differently
 - Change management
- >> Lack of data for training
 - >> Potential enablers:
 - Purposefully collecting data for training
 - Creating training datasets
 - Tools for data cleaning and pre-processing

SUMMARY

- >> Al adoption in software testing is not only a technological issue
 - >> External, managerial, organizational and human issues impact adoption
- >> Al solutions for software testing exist, but there is a lack of reported success stories
 - >> It is possible that companies want to keep their success as a secret

NEXT STEPS

- >> Interview study with companies
 - >> Companies with no Al adoption in software testing
 - Why not?
 - >> Companies that have adopted AI in their software testing?
 - Why?
 - How?
 - What use cases?
 - What technologies have been used?
 - What challenges have arisen in the Al adoption process?
- >> Interviewees
 - Managers
 - >> Software testing specialists (testers, test automation developers), developers

