/\ The 20th International Conference on Software Engineering Advances
IARIA September 28, 2025 to October 02, 2025 - Lisbon, Portugal

YA

Protocol-aware Cloud Gateway
with Adaptive Rate Control

Ivana Kovacevic *, Vasilije Mili¢, Isidora Knezevi¢, Tamara Rankovi¢, Milos Simic
Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

“kovacevic.ivana@uns.ac.rs

About the presenter

@“TET 7e

£

S
)
% ey

..3::\\3\‘(\“)(A, 1,
g : ."\0

Current: PhD student and TA at the Faculty of Technical Sciences,
University of Novi Sad, and a researcher on the TaRDIS project

Education: Master of Science from the Faculty of Technical Sciences and
a Bachelor with Honours in Computer and Control Engineering from the
Faculty of Technical Sciences, University of Novi Sad, Serbia

Research interests: multi-party computation, distributed systems,
cybersecurity

About the project

e

@‘\TET 7e
04.[]

4&\t\uj(\\&l)(i3
o /

o
L

Trustworthy and Resilient Decentralised Intelligence for Edge
Systems

TaRDIS focuses on supporting the correct and efficient
development of applications for swarms and decentralised
distributed systems, by combining a novel programming
paradigm with a toolbox for supporting the development and
execution of applications.

TaRDIS's primary goal is to significantly ease the complexity
and reduce the effort of building correct and efficient
heterogeneous swarms.

@ TaRDIS

Agenda

TET
Q\,\d“ k&,
= t
0.

3, i;
1’0444 £

Introduction

Motivation

Proposed prototype

Architecture

Protocol Transcoding (HTTP « gRPC)
Rate limiter

Request flow

Evaluation

Conclusion

Introduction

* Distributed cloud systems must support a wide range '
of data formats and communication protocols. Q b‘“" W LQ
Ueer =
* Current cloud solutions are primarily optimized num.mn Ternyinal &

Terminal Terminal

for inter-service communication via RPC (binary), which " A xR
may not always be suitable for external web clients. o ‘ o

« Communication protocols play a pivotal role in:

 Real-time data conversion

« Ensuring interoperability without data loss

* Meeting latency and reliability constraints. m/ Q ~mj (\i%
oo Q Terminal Q Q Terminal Q Terminal

User User User User

&

Can A

Motivation 07

» Cloud services require high availability, low latency, and robustness, as well as seamless integration across applications,
users, and services.

» Research questions:
» How to achieve robustness while enabling support for multiple protocols in the same environment?

» How to ensure high availability and low latency, without having network congestion and resource exhaustion due to
high traffic and a high frequency of requests?

* Goals:
v" Seamless protocol transcoding (HTTP < gRPC)
v Centralized and configurable rate-limiting

v’ Preserve system scalability and availability.

e

TET
s‘“@“ 2
Cag

Qs‘t\qu 28
o __’“0

Open-source, platform-independent components developed in Golang for distributed cloud environments, integrated

L

Proposed prototype

into Constellations (c12s) distributed cloud platform.

Protocol-aware Gateway

« Transcodes HTTP — gRPC dynamically using client discovery and reflection
« RESTful compliance without modifying service code

» Ensures no data loss, as well as proper headers and response code conversion

* Rate Limiting Service
« Supports the Token bucket, the Leaky bucket, and the Sliding window algorithms

« System-wide, user-level, and priority-based rate control

)
| -
)
+
O
D
=
e
O
| -
<

gRPC

constellations control plana

node

management

node
node
node

scheduler
urffw

-

Sy

i

config
management

[=

: m

(=

[TH]

D5

Sis e
cE

B

e

authentication

- -

HTTPS

.mm
&
= 58 =
M ~ .m
i «—» E
(=]
- &
W s
W
: :
™ B
OF<_§

Protocol Transcoding (HTTP « gRPC)

« REST APIs dominate (80% of public APIs) — there is a need
for gRPC to follow REST patterns.

* The process of HTTP route generation consists of:
1. Generation of sub-routers for every group,
2. Sub-routing groups based on the version,

3. Assigning a path to each route based on the method
name from the configuration file,

4. Creating a middleware that integrates a handler
function and HTTP method type for each route.

gateway:
route: /apis
port: 5555

services:

Kuiper: kuiper:5000
ExampleService: example:9001
RateLimitService: rate limiter service:8080
groups:
core:
vl:
CreateExample:
method route: /example-route
type: POST
service: ExampleService
PutStandaloneConfig:
method route: /configs/standalone
type: PUT

service: Kuiper

Example of a YAML gateway configuration

e

@‘\TET 7e
04.[]

Rate limiter

o
L

Qs‘t\qu 28
o __’“0

» Per-client customization - flexible limits for end users and service methods; if the user is omitted, the rate limiter applies
globally at the system level.

» Algorithms supported — Token Bucket (traffic shaping), Leaky Bucket (smooth throughput), Sliding Window (fine-grained
limits).

* The rate limiter service offers configurable attributes:

Unique limiter ID — format user_id-method_id (regex supported)
 REQ_LIMIT + PERIOD - total allowed requests

* BURST — max concurrent requests (throttling)

* PRIORITY = queueing (lower value = higher priority)

» Caching integration for scalability

Request flow

:Gateway :RateLimiter :Constellations
client 1 client 2
— 1. PUT standalone config
P 1.1: IsRequestAllowed()
1.2: allowed = true >D
D T T T Py U
1.3: transcode HTTP request
4—— 1o gRPC method
1.4: PutStandaloneConfig()
1.5: status: OK (0) E
T
1.6: convert gRPC response
4——to HTTP status and response
1.7: 200 OK
< ___________________ ||
2. PUT standalone config
> 2.1: IsRequestAllowed()
2.2: allowed = false >_D
2.3: 429 Too many requests AR e e

Evaluation

e

@‘\TET 7e
04.[]

Qs‘t\qu 28
o __’“0

o
L

« Test setup: 1000 requests to the same route, configured
to use the token bucket, leaky bucket, and sliding window
algorithm, with the same REQ_LIMIT parameter set to 10.

» Average latency - the ratio between regular response
time and response time when the rate limiter is applied.

e Control rate - the ratio between the number of successful
and the number of rejected requests.

« The transcoding process occurs at the beginning of the
request call, and it takes less than 5ms.

Avg.
response
time

Avg.
latency

Control
rate

Total time

(~1000
req)

Token
Bucket

0.097s

0.074s

0.1273

10.502s

Leaky
Bucket

1.001s

0.043s

13.253s

Sliding
Window

0.095s

0.022s

0.1235

10.084s

Conclusion

« We proposed platform-agnostic, easy-to-integrate components:
« protocol-transcoding gateway and
» adaptive rate-control service.

* We achieved high availability and robustness through consistent communication, ensuring no performance loss, and fair
resource allocation for users and services.

Future work:
« Adaptive rate limiting using telemetry & monitoring
» Support for distributed rate-limiting

* Broader validation through real-world integration

IARIA

Thank You!

Questions?

	Slide 1: Protocol-aware Cloud Gateway with Adaptive Rate Control
	Slide 2: About the presenter
	Slide 3: About the project
	Slide 4: Agenda
	Slide 5: Introduction
	Slide 6: Motivation
	Slide 7: Proposed prototype
	Slide 8: Architecture
	Slide 9: Protocol Transcoding (HTTP ↔ gRPC)
	Slide 10: Rate limiter
	Slide 11: Request flow
	Slide 12: Evaluation
	Slide 13: Conclusion
	Slide 14: Thank You!

