
Protocol-aware Cloud Gateway

with Adaptive Rate Control
Ivana Kovačević *, Vasilije Milić, Isidora Knežević, Tamara Ranković, Miloš Simić

Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

* kovacevic.ivana@uns.ac.rs

The 20th International Conference on Software Engineering Advances

September 28, 2025 to October 02, 2025 - Lisbon, Portugal

About the presenter

Current: PhD student and TA at the Faculty of Technical Sciences,

University of Novi Sad, and a researcher on the TaRDIS project

Education: Master of Science from the Faculty of Technical Sciences and

a Bachelor with Honours in Computer and Control Engineering from the

Faculty of Technical Sciences, University of Novi Sad, Serbia

Research interests: multi-party computation, distributed systems,

cybersecurity

About the project

• Trustworthy and Resilient Decentralised Intelligence for Edge

Systems

• TaRDIS focuses on supporting the correct and efficient

development of applications for swarms and decentralised

distributed systems, by combining a novel programming

paradigm with a toolbox for supporting the development and

execution of applications.

• TaRDIS’s primary goal is to significantly ease the complexity

and reduce the effort of building correct and efficient

heterogeneous swarms.

Agenda

Introduction

Motivation

Proposed prototype

Architecture

Protocol Transcoding (HTTP gRPC)

Rate limiter

Request flow

Evaluation

Conclusion

Introduction

• Distributed cloud systems must support a wide range

of data formats and communication protocols.

• Current cloud solutions are primarily optimized

for inter-service communication via RPC (binary), which

may not always be suitable for external web clients.

• Communication protocols play a pivotal role in:

• Real-time data conversion

• Ensuring interoperability without data loss

• Meeting latency and reliability constraints.

Motivation

• Cloud services require high availability, low latency, and robustness, as well as seamless integration across applications,

users, and services.

• Research questions:

➢ How to achieve robustness while enabling support for multiple protocols in the same environment?

➢ How to ensure high availability and low latency, without having network congestion and resource exhaustion due to

high traffic and a high frequency of requests?

• Goals:

✓ Seamless protocol transcoding (HTTP gRPC)

✓ Centralized and configurable rate-limiting

✓ Preserve system scalability and availability.

Proposed prototype

• Open-source, platform-independent components developed in Golang for distributed cloud environments, integrated

into Constellations (c12s) distributed cloud platform.

• Protocol-aware Gateway

• Transcodes HTTP → gRPC dynamically using client discovery and reflection

• RESTful compliance without modifying service code

• Ensures no data loss, as well as proper headers and response code conversion

• Rate Limiting Service

• Supports the Token bucket, the Leaky bucket, and the Sliding window algorithms

• System-wide, user-level, and priority-based rate control

Architecture

Protocol Transcoding (HTTP gRPC)

• REST APIs dominate (80% of public APIs) – there is a need

for gRPC to follow REST patterns.

• The process of HTTP route generation consists of:

1. Generation of sub-routers for every group,

2. Sub-routing groups based on the version,

3. Assigning a path to each route based on the method

name from the configuration file,

4. Creating a middleware that integrates a handler

function and HTTP method type for each route.

Example of a YAML gateway configuration

Rate limiter

• Per-client customization - flexible limits for end users and service methods; if the user is omitted, the rate limiter applies
globally at the system level.

• Algorithms supported – Token Bucket (traffic shaping), Leaky Bucket (smooth throughput), Sliding Window (fine-grained
limits).

• The rate limiter service offers configurable attributes:

• Unique limiter ID – format user_id-method_id (regex supported)

• REQ_LIMIT + PERIOD → total allowed requests

• BURST → max concurrent requests (throttling)

• PRIORITY → queueing (lower value = higher priority)

• Caching integration for scalability

Request flow

Evaluation

• Test setup: 1000 requests to the same route, configured

to use the token bucket, leaky bucket, and sliding window

algorithm, with the same REQ_LIMIT parameter set to 10.

• Average latency - the ratio between regular response

time and response time when the rate limiter is applied.

• Control rate - the ratio between the number of successful

and the number of rejected requests.

• The transcoding process occurs at the beginning of the

request call, and it takes less than 5ms.

Token

Bucket

Leaky

Bucket

Sliding

Window

Avg.

response

time

0.097s 1.001s 0.095s

Avg.

latency
0.074s 0.043s 0.022s

Control

rate
0.1273 / 0.1235

Total time

(~1000

req)

10.502s 13.253s 10.084s

Conclusion

• We proposed platform-agnostic, easy-to-integrate components:

• protocol-transcoding gateway and

• adaptive rate-control service.

• We achieved high availability and robustness through consistent communication, ensuring no performance loss, and fair

resource allocation for users and services.

Future work:

• Adaptive rate limiting using telemetry & monitoring

• Support for distributed rate-limiting

• Broader validation through real-world integration

Thank You!
Questions?

	Slide 1: Protocol-aware Cloud Gateway with Adaptive Rate Control
	Slide 2: About the presenter
	Slide 3: About the project
	Slide 4: Agenda
	Slide 5: Introduction
	Slide 6: Motivation
	Slide 7: Proposed prototype
	Slide 8: Architecture
	Slide 9: Protocol Transcoding (HTTP ↔ gRPC)
	Slide 10: Rate limiter
	Slide 11: Request flow
	Slide 12: Evaluation
	Slide 13: Conclusion
	Slide 14: Thank You!

