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Software Transactional Memory (STM)
What is it?

e Transactional: like database transactions

o ACI of "ACID" (atomicity, consistency, isolation)
e Memory: works on objects/pointers in main memory (RAM)
e Software: implemented in software

o e.g., in the compiler, or as a library
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o ACI of "ACID" (atomicity, consistency, isolation)
e Memory: works on objects/pointers in main memory (RAM)
e Software: implemented in software

o e.g., in the compiler, or as a library

Why is it useful?

High level approach to concurrency and parallelism, without (most of) the
downsides of using manual locks

e we can read/write multiple memory locations (intertwined with arbitrary
logic), and the reads/writes appear to take effect atomically (on commit)
« i.e., we get thread safety, but it's easier to use than using locks directly

def incrementBoth(a: Ref[Int], b: Ref[Int]) = atomic { implicit txn =>
a.set(a.get + 1)
b.set(b.get + 1)

}
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Benchmarking STM engines

STM is a general approach to concurrency/parallelism

 various algorithms and implementation strategies exist
« implementations (STM engines) are available for various programming
languages (C, C++, Java, Scala, Haskell, ...)
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STM is a general approach to concurrency/parallelism
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« implementations (STM engines) are available for various programming
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Various benchmark suites are also available:

 data structure microbenchmarks
o binary search trees (implemented with STM), ...
e STM-specific benchmark suites:
o STAMP, STMBench?7
e Lee-TM:
o Lee's algorithm, parallelized with STM
o previously used to measure STMs implemented for C and Ruby
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Benchmarking STM engines

STM is a general approach to concurrency/parallelism

 various algorithms and implementation strategies exist
« implementations (STM engines) are available for various programming
languages (C, C++, Java, Scala, Haskell, ...)

Various benchmark suites are also available:

 data structure microbenchmarks
o binary search trees (implemented with STM), ...
e STM-specific benchmark suites:
o STAMP, STMBench?7
e Lee-TM:
o Lee's algorithm, parallelized with STM
o previously used to measure STMs implemented for C and Ruby
« We've also used Lee's algorithm...
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Lee's Algorithm (overview)

o A well-known algorithm to solve the circuit-board routing problem
e Lays out "wires" on a circuit board

o to connect source-destination endpoints
e Minimizes the cost of a route

o longer routes cost more

o crossing wires also cost more
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Source of image: https://chrisseaton.com/truffleruby/ruby-stm/
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Lee's Algorithm (details)

Solve one route:

1. Expansion: start a "wave" from the source of the route

o count the distance (longer wire costs more)

o also take into account existing wires (crossing costs more)

o stop when the destination is reached

2. Backtracking: go from destination back to source

o always choose the lowest cost

3. Laying the route (it will count as an "existing" wire from now on)
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Lee's Algorithm (details)

Solve one route:

1. Expansion: start a "wave" from the source of the route
o count the distance (longer wire costs more)
o also take into account existing wires (crossing costs more)
o stop when the destination is reached
2. Backtracking: go from destination back to source
o always choose the lowest cost
3. Laying the route (it will count as an "existing" wire from now on)
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Good for benchmarking STM, because:

« Very hard to parallelize with manual locks; easy with STM
e We can vary transaction size and conflict rate by varying the input boards
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Our benchmarks

Benchmarked STM implementations on the JVM (Java Virtual Machine)
Selected various STM engines for functional programming languages:
o 5 Scala: Cats STM, CHOAM, Kyo STM, ScalaSTM, ZSTM
o 1 Kotlin: arrow-fx-stm
Implemented Lee's algorithm with all of these
Additionally (where applicable) implemented some variants:
o optimization by weakened consistency (lack of opacity; early release)
o functional API wrapper of an imperative STM API (ScalaSTM)
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Our benchmarks

Benchmarked STM implementations on the JVM (Java Virtual Machine)
Selected various STM engines for functional programming languages:
o 5 Scala: Cats STM, CHOAM, Kyo STM, ScalaSTM, ZSTM
o 1 Kotlin: arrow-fx-stm
Implemented Lee's algorithm with all of these
Additionally (where applicable) implemented some variants:
o optimization by weakened consistency (lack of opacity; early release)
o functional API wrapper of an imperative STM API (ScalaSTM)

Experimental setup:

e Scala 3.7.0, OpenJDK 21
o 2x Intel Xeon E5-2680 with 12 physical cores (i.e., 24 cores in total)
« performed measurements with JMH (Java Microbenchmark Harness)
e measured the time needed to lay out routes for
o various circuit boards
o using a varying number of cores/threads
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Results
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Observations

STM engines with purely functional APIs tend to be slower than
ones with imperative APIs
o GC (garbage collector) pressure
o interpretation overhead
The Kotlin STM engine (arrow-fx-stm) beats most of the Scala ones
o runs on Kotlin coroutines (vs. Scala fibers)
o see also previous point (imperative vs. functional)
Weakening consistency and early release are useful optimizations
o especially on inputs with lots of conflicts
Maintaining transaction logs (read/write sets) can be expensive
o specifically for ZSTM and Cats STM
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Future work

e More profiling
e Optimizing some of these STM engines
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Thank you!

Benchmark code is open source at: https://github.com/nokia/stm-benchmark

Questions?
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Extra slides
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Imperative vs. Functional STM APIs

Imperative API (example):

def incrementBoth(a: Ref[Int], b: Ref[Int]) = atomic { implicit txn =>
a.set(a.get + 1)
b.set(b.get + 1)

}

Functional API (example):

def incrementBoth(a: Ref[Int], b: Ref[Int]) = {
a.update(x => x + 1) *> b.update(x => x + 1)

}

incrementBoth(a, b).run
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Opacity

« A consistency property specifically for STM systems
e Guarantees that any transaction always sees a consistent view of memory
e Even if it will later abort/retry

With no opacity, a transaction can observe inconsistent states (and then later
abort/retry)

« This can be used for optimizations
o non-opaque reads are typically cheaper
e But can be dangerous
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Early release

« An STM engine typically "logs" memory locations read and written
o "read set" and "write set"
e Early release is a mechanism to remove items from the read set of a
transaction
o l.e., releasing those memory locations earlier than the commit of the
transaction
» Good: reduces transaction conflicts
e Can be bad: the released memory locations won't be checked for
consistency when committing
o l.e., early release is another way of weakening consistency for
improving performance
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