
Dániel Urbán
Nokia Bell Labs

Péter Fazekas
Nokia Bell Labs

Performance Evaluation of
Software Transactional Memory Implementations

ICSEA 2025, Lisbon, Portugal
2025-10-01

1 / 10

Agenda
What is Software Transactional Memory?
Benchmarking STM implementations
Our benchmarks
Results and observations
Future work

2 / 10

Software Transactional Memory (STM)

What is it?

Transactional: like database transactions
ACI of "ACID" (atomicity, consistency, isolation)

Memory: works on objects/pointers in main memory (RAM)
Software: implemented in software

e.g., in the compiler, or as a library

3 / 10

Software Transactional Memory (STM)

What is it?

Transactional: like database transactions
ACI of "ACID" (atomicity, consistency, isolation)

Memory: works on objects/pointers in main memory (RAM)
Software: implemented in software

e.g., in the compiler, or as a library

Why is it useful?

High level approach to concurrency and parallelism, without (most of) the
downsides of using manual locks

we can read/write multiple memory locations (intertwined with arbitrary
logic), and the reads/writes appear to take effect atomically (on commit)
i.e., we get thread safety, but it's easier to use than using locks directly

 def incrementBoth(a: Ref[Int], b: Ref[Int]) = atomic { implicit txn =>
 a.set(a.get + 1)
 b.set(b.get + 1)
 }

3 / 10

Benchmarking STM engines
STM is a general approach to concurrency/parallelism

various algorithms and implementation strategies exist
implementations (STM engines) are available for various programming
languages (C, C++, Java, Scala, Haskell, ...)

4 / 10

Benchmarking STM engines
STM is a general approach to concurrency/parallelism

various algorithms and implementation strategies exist
implementations (STM engines) are available for various programming
languages (C, C++, Java, Scala, Haskell, ...)

Various benchmark suites are also available:

data structure microbenchmarks
binary search trees (implemented with STM), ...

STM-specific benchmark suites:
STAMP, STMBench7

Lee-TM:
Lee's algorithm, parallelized with STM
previously used to measure STMs implemented for C and Ruby

4 / 10

Benchmarking STM engines
STM is a general approach to concurrency/parallelism

various algorithms and implementation strategies exist
implementations (STM engines) are available for various programming
languages (C, C++, Java, Scala, Haskell, ...)

Various benchmark suites are also available:

data structure microbenchmarks
binary search trees (implemented with STM), ...

STM-specific benchmark suites:
STAMP, STMBench7

Lee-TM:
Lee's algorithm, parallelized with STM
previously used to measure STMs implemented for C and Ruby

We've also used Lee's algorithm...

4 / 10

Lee's Algorithm (overview)
A well-known algorithm to solve the circuit-board routing problem
Lays out "wires" on a circuit board

to connect source-destination endpoints
Minimizes the cost of a route

longer routes cost more
crossing wires also cost more

Source of image: https://chrisseaton.com/truffleruby/ruby-stm/

5 / 10

https://chrisseaton.com/truffleruby/ruby-stm/

Solve the whole board:

1. solve all routes; either
one-by-one, or in parallel
(solve 1 route – 1 transaction)

Lee's Algorithm (details)
Solve one route:

1. Expansion: start a "wave" from the source of the route
count the distance (longer wire costs more)
also take into account existing wires (crossing costs more)
stop when the destination is reached

2. Backtracking: go from destination back to source
always choose the lowest cost

3. Laying the route (it will count as an "existing" wire from now on)

6 / 10

Solve the whole board:

1. solve all routes; either
one-by-one, or in parallel
(solve 1 route – 1 transaction)

Lee's Algorithm (details)
Solve one route:

1. Expansion: start a "wave" from the source of the route
count the distance (longer wire costs more)
also take into account existing wires (crossing costs more)
stop when the destination is reached

2. Backtracking: go from destination back to source
always choose the lowest cost

3. Laying the route (it will count as an "existing" wire from now on)

Good for benchmarking STM, because:

Very hard to parallelize with manual locks; easy with STM
We can vary transaction size and conflict rate by varying the input boards

6 / 10

Our benchmarks
Benchmarked STM implementations on the JVM (Java Virtual Machine)
Selected various STM engines for functional programming languages:

5 Scala: Cats STM, CHOAM, Kyo STM, ScalaSTM, ZSTM
1 Kotlin: arrow-fx-stm

Implemented Lee's algorithm with all of these
Additionally (where applicable) implemented some variants:

optimization by weakened consistency (lack of opacity; early release)
functional API wrapper of an imperative STM API (ScalaSTM)

7 / 10

Our benchmarks
Benchmarked STM implementations on the JVM (Java Virtual Machine)
Selected various STM engines for functional programming languages:

5 Scala: Cats STM, CHOAM, Kyo STM, ScalaSTM, ZSTM
1 Kotlin: arrow-fx-stm

Implemented Lee's algorithm with all of these
Additionally (where applicable) implemented some variants:

optimization by weakened consistency (lack of opacity; early release)
functional API wrapper of an imperative STM API (ScalaSTM)

Experimental setup:

Scala 3.7.0, OpenJDK 21
2× Intel Xeon E5-2680 with 12 physical cores (i.e., 24 cores in total)
performed measurements with JMH (Java Microbenchmark Harness)
measured the time needed to lay out routes for

various circuit boards
using a varying number of cores/threads

7 / 10

Short routes, no conflicts

More realistic board

Short routes, no conflicts (zoomed)

More realistic board (zoomed)

Results

8 / 10

Observations
STM engines with purely functional APIs tend to be slower than
ones with imperative APIs

GC (garbage collector) pressure
interpretation overhead

The Kotlin STM engine (arrow-fx-stm) beats most of the Scala ones
runs on Kotlin coroutines (vs. Scala fibers)
see also previous point (imperative vs. functional)

Weakening consistency and early release are useful optimizations
especially on inputs with lots of conflicts

Maintaining transaction logs (read/write sets) can be expensive
specifically for ZSTM and Cats STM

9 / 10

Future work
More profiling
Optimizing some of these STM engines

10 / 10

Thank you!
Benchmark code is open source at: https://github.com/nokia/stm-benchmark

Questions?

10 / 10

https://github.com/nokia/stm-benchmark

Extra slides

10 / 10

Imperative vs. Functional STM APIs
Imperative API (example):

 def incrementBoth(a: Ref[Int], b: Ref[Int]) = atomic { implicit txn =>
 a.set(a.get + 1)
 b.set(b.get + 1)
 }

Functional API (example):

 def incrementBoth(a: Ref[Int], b: Ref[Int]) = {
 a.update(x => x + 1) *> b.update(x => x + 1)
 }

 incrementBoth(a, b).run

10 / 10

Opacity
A consistency property specifically for STM systems
Guarantees that any transaction always sees a consistent view of memory
Even if it will later abort/retry

With no opacity, a transaction can observe inconsistent states (and then later
abort/retry)

This can be used for optimizations
non-opaque reads are typically cheaper

But can be dangerous

10 / 10

Early release
An STM engine typically "logs" memory locations read and written

"read set" and "write set"
Early release is a mechanism to remove items from the read set of a
transaction

i.e., releasing those memory locations earlier than the commit of the
transaction

Good: reduces transaction conflicts
Can be bad: the released memory locations won't be checked for
consistency when committing

i.e., early release is another way of weakening consistency for
improving performance

10 / 10

