Performance Evaluation of
Software Transactional Memory Implementations

Daniel Urban Péter Fazekas
Nokia Bell Labs Nokia Bell Labs

ICSEA 2025, Lisbon, Portugal
2025-10-01

1/10

Agenda

What is Software Transactional Memory?
Benchmarking STM implementations
Our benchmarks

Results and observations

Future work

2/10

Software Transactional Memory (STM)
What is it?

e Transactional: like database transactions

o ACI of "ACID" (atomicity, consistency, isolation)
e Memory: works on objects/pointers in main memory (RAM)
e Software: implemented in software

o e.g., in the compiler, or as a library

3/10

Software Transactional Memory (STM)
What is it?

e Transactional: like database transactions

o ACI of "ACID" (atomicity, consistency, isolation)
e Memory: works on objects/pointers in main memory (RAM)
e Software: implemented in software

o e.g., in the compiler, or as a library

Why is it useful?

High level approach to concurrency and parallelism, without (most of) the
downsides of using manual locks

e we can read/write multiple memory locations (intertwined with arbitrary
logic), and the reads/writes appear to take effect atomically (on commit)
« i.e., we get thread safety, but it's easier to use than using locks directly

def incrementBoth(a: Ref[Int], b: Ref[Int]) = atomic { implicit txn =>
a.set(a.get + 1)
b.set(b.get + 1)

}

3/10

Benchmarking STM engines

STM is a general approach to concurrency/parallelism

 various algorithms and implementation strategies exist
« implementations (STM engines) are available for various programming
languages (C, C++, Java, Scala, Haskell, ...)

4/10

Benchmarking STM engines

STM is a general approach to concurrency/parallelism

 various algorithms and implementation strategies exist
« implementations (STM engines) are available for various programming
languages (C, C++, Java, Scala, Haskell, ...)

Various benchmark suites are also available:

 data structure microbenchmarks
o binary search trees (implemented with STM), ...
e STM-specific benchmark suites:
o STAMP, STMBench?7
e Lee-TM:
o Lee's algorithm, parallelized with STM
o previously used to measure STMs implemented for C and Ruby

4/10

Benchmarking STM engines

STM is a general approach to concurrency/parallelism

 various algorithms and implementation strategies exist
« implementations (STM engines) are available for various programming
languages (C, C++, Java, Scala, Haskell, ...)

Various benchmark suites are also available:

 data structure microbenchmarks
o binary search trees (implemented with STM), ...
e STM-specific benchmark suites:
o STAMP, STMBench?7
e Lee-TM:
o Lee's algorithm, parallelized with STM
o previously used to measure STMs implemented for C and Ruby
« We've also used Lee's algorithm...

4/10

Lee's Algorithm (overview)

o A well-known algorithm to solve the circuit-board routing problem
e Lays out "wires" on a circuit board

o to connect source-destination endpoints
e Minimizes the cost of a route

o longer routes cost more

o crossing wires also cost more

-
S

G—

.__rj”il
. i
=

81 Ll%ﬂ |
1%

L

.

Source of image: https://chrisseaton.com/truffleruby/ruby-stm/

5/10

https://chrisseaton.com/truffleruby/ruby-stm/

Lee's Algorithm (details)

Solve one route:

1. Expansion: start a "wave" from the source of the route

o count the distance (longer wire costs more)

o also take into account existing wires (crossing costs more)

o stop when the destination is reached

2. Backtracking: go from destination back to source

o always choose the lowest cost

3. Laying the route (it will count as an "existing" wire from now on)

3

w

2 2
Solve the whole board:

1. solve all routes; either >)
one-by-one, or in parallel > 12 | 3
(solve 1 route — 1 transaction)

413 4

o | O &

6/10

Lee's Algorithm (details)

Solve one route:

1. Expansion: start a "wave" from the source of the route
o count the distance (longer wire costs more)
o also take into account existing wires (crossing costs more)
o stop when the destination is reached
2. Backtracking: go from destination back to source
o always choose the lowest cost
3. Laying the route (it will count as an "existing" wire from now on)

2 213|421]2]|3]¢4
Solve the whole board:

1. solve all routes; either 2 2|13 | 4 211|213
one-by-one, or in parallel
(solve 1 route — 1 transaction)

w
o
w
~
O
w
™o
w
~
o | O] &

Good for benchmarking STM, because:

« Very hard to parallelize with manual locks; easy with STM
e We can vary transaction size and conflict rate by varying the input boards

6/10

Our benchmarks

Benchmarked STM implementations on the JVM (Java Virtual Machine)
Selected various STM engines for functional programming languages:
o 5 Scala: Cats STM, CHOAM, Kyo STM, ScalaSTM, ZSTM
o 1 Kotlin: arrow-fx-stm
Implemented Lee's algorithm with all of these
Additionally (where applicable) implemented some variants:
o optimization by weakened consistency (lack of opacity; early release)
o functional API wrapper of an imperative STM API (ScalaSTM)

7/10

Our benchmarks

Benchmarked STM implementations on the JVM (Java Virtual Machine)
Selected various STM engines for functional programming languages:
o 5 Scala: Cats STM, CHOAM, Kyo STM, ScalaSTM, ZSTM
o 1 Kotlin: arrow-fx-stm
Implemented Lee's algorithm with all of these
Additionally (where applicable) implemented some variants:
o optimization by weakened consistency (lack of opacity; early release)
o functional API wrapper of an imperative STM API (ScalaSTM)

Experimental setup:

e Scala 3.7.0, OpenJDK 21
o 2x Intel Xeon E5-2680 with 12 physical cores (i.e., 24 cores in total)
« performed measurements with JMH (Java Microbenchmark Harness)
e measured the time needed to lay out routes for
o various circuit boards
o using a varying number of cores/threads

7/10

Results

com.nokia.

-— Arrowstm
~-— Baseline
3 Catsstm
-— ErRxnSolver
30
-— EntRxnSolver
~— ImpRxnSolver
25
-— Kyostm
s ~— Rxnsolver
$ 20
-— Scalastm
15 =—— WrsStm
=—— ZSTM
10
05 ——
00
2 4 6 8 10 12 14 16
_ncpu
fli
Short routes, no conflicts
com.nokia.
p -— ArrowStm
-— Baseline
CatsStm
4 -— ErRxnSolver
-— ErtRxnSolver
-— ImpRxnSolver
3 -— KyoStm
s -— RxnSolver
8
° -— ScalaStm
2 -— WrStm
-—— 28TM™
1 \
b 7§
2 4 6 8 10 1z 14 16
_ncpu

More realistic board

slop

com.nokia.

-— Arrowstm
=—— ErRxnSolver

0.12 EntRxnSolver
-— ImpRxnSolver

0.10 -— RxnSolver
-— Scalastm

o0.0b - WrStm

0.06

0.04

osg K

0.00

2 4 6 8 10 12 14 16
_ncpu

Short routes, no conflicts (zoomed)

com.nokia.
06 -— ArrowStm
-— Baseline
ob ErRxnSolver
-— ErtRxnSolver
-— ImpRxnSolver
0.4 -— RxnSolver
—
-— ScalaStm
-— WrStm
03
—
——
0.2
0.1
0.0
2 4 6 8 10 12 14 16

_nepu

More realistic board (zoomed)

8/10

Observations

STM engines with purely functional APIs tend to be slower than
ones with imperative APIs
o GC (garbage collector) pressure
o interpretation overhead
The Kotlin STM engine (arrow-fx-stm) beats most of the Scala ones
o runs on Kotlin coroutines (vs. Scala fibers)
o see also previous point (imperative vs. functional)
Weakening consistency and early release are useful optimizations
o especially on inputs with lots of conflicts
Maintaining transaction logs (read/write sets) can be expensive
o specifically for ZSTM and Cats STM

9/10

Future work

e More profiling
e Optimizing some of these STM engines

10/10

Thank you!

Benchmark code is open source at: https://github.com/nokia/stm-benchmark

Questions?

10/10

https://github.com/nokia/stm-benchmark

Extra slides

10/10

Imperative vs. Functional STM APIs

Imperative API (example):

def incrementBoth(a: Ref[Int], b: Ref[Int]) = atomic { implicit txn =>
a.set(a.get + 1)
b.set(b.get + 1)

}

Functional API (example):

def incrementBoth(a: Ref[Int], b: Ref[Int]) = {
a.update(x => x + 1) *> b.update(x => x + 1)

}

incrementBoth(a, b).run

10/10

Opacity

« A consistency property specifically for STM systems
e Guarantees that any transaction always sees a consistent view of memory
e Even if it will later abort/retry

With no opacity, a transaction can observe inconsistent states (and then later
abort/retry)

« This can be used for optimizations
o non-opaque reads are typically cheaper
e But can be dangerous

10/10

Early release

« An STM engine typically "logs" memory locations read and written
o "read set" and "write set"
e Early release is a mechanism to remove items from the read set of a
transaction
o l.e., releasing those memory locations earlier than the commit of the
transaction
» Good: reduces transaction conflicts
e Can be bad: the released memory locations won't be checked for
consistency when committing
o l.e., early release is another way of weakening consistency for
improving performance

10/10

