
TÜBİTAK BİLGEM
Data-Driven Insights for Software Development Process Improvement: 

A Defect Analysis

Melike TAKIL, Zeliha DİNDAŞ
E-mail : melike.takil@tubitak.gov.tr , zeliha.dindas@tubitak.gov.tr

Article Number : 10034

Unclassified



Who are we?

Melike TAKIL

• MSc in Industrial Engineer with 5 years of 
experience in software industry & public
institutions

• Master Thesis: Self-Starting Control Charts
for Software Development Projects, 2023.

Unclassified

Zeliha DİNDAŞ

• MSc in Statistics with 10+ years of experience in 
the public sector.

• Master Thesis : Estimation of Variance 
Components in Measurement Systems Analysis, 
2017.



3



2000+



5







INTRODUCTION

Unclassified



Paper Structure

1. Related Work

2. Methodology

3. Analysis

4. Conclusions and Future Work



Why Software Defects Matter?

Why Are Software Defects Important?

• Defects (bugs/errors) directly impact reliability, 
maintainability, and user satisfaction.

• Early detection & resolution reduce rework, cost, and 
organizational risk.

• Crucial in public-sector projects where credibility and 
compliance are critical.

• Defect analysis enables prevention by tracing root causes.



Public Sector: Unique Challenges

What Makes the Public Sector Different?

• Greater regulatory oversight and complex stakeholder
environments.

• Longer procurement and development cycles.

• Frequent reuse and integration across agencies → higher
defect impact.

• Defects can propagate through interconnected systems.



RELATED WORK

Unclassified



Importance of Defect Tracking in Software Quality

Why Defect Tracking Matters?

• Defect data is a critical management asset for 
process improvement (Grady, 1996).

• Defect frequency is a direct, quantifiable 
indicator of software quality.

• More defects = lower reliability, usability, 
efficiency.

• Early defect prevention is more cost-effective 
than late detection.



Defect Casual Analysis (DCA)

From Detection to Prevention: Defect Causal Analysis 
(DCA)

• DCA = structured method for identifying root causes of recurring 
defects.

• Uses classification tools like Pareto charts to prioritize frequent 
defect types.

• Enables targeted process improvements.

• Shifts focus from reactive fixing to proactive prevention.



Statistical Process Control in Software

Using Statistical Process Control (SPC)

• Software processes exhibit variation: natural 
(common) vs. assignable (special) causes.

• SPC helps distinguish between the two and 
identify instability in the process.

• Control charts (e.g., defect density over time) 
help monitor process health.

• Timely action on SPC data leads to sustained 
process improvement.



METHODOLOGY

Unclassified



Study Rationale and Scope

Why This Study?

• Triggered by a noticeable increase in production defects in a 
public-sector software project.

• Aimed to analyze patterns, timing, and root causes of 
defects.

• R Studio dashboards signaled unusual trends → deeper 
investigation initiated.

• Scope refined with input from technical lead & project 
manager for relevance.

• Goal is to support shift from reactive defect handling to 
proactive quality assurance, aligned with TQM and CMMI.



Dataset Overview

Data Source and Structure

• Data pulled from a task and issue 
management platform used across the full 
SDLC.

• Platform captures detailed metadata: issue 
type, severity, component, status, etc. 

• Dataset covers 147 resolved defects in 
production, from Jan 2024 to Apr 2025. 

• Entries were validated & filtered in collaboration 
with project leadership. 

• Focus: Only confirmed production defects (not 
test/staging environment issues).

Field Value
Issue Key 143

Issue Type Defect

Sprint Period 01.04.24
Severity Medium

Defect Type Coding

Component/s A

Detected Activity System Monitoring

Resolution Done

Status Closed



Key Variables Analyzed

Defect Variables Used in the Analysis

• Severity: Impact level of each defect (minor → major) 

• Detected Activity: Phase where defect was found (e.g., 
Monitoring, Development, Test)

• Component(s): Affected modules/subsystems

• Detected Sprint: When the issue was logged (enables time-
based analysis) 

• Defect Type: Technical nature (e.g., coding, data, UI)



Data Quality and Limitations

Data Considerations and Limitations

• Manual data entry may affect accuracy/timeliness.

• Subjectivity in issue classification (defect vs. other).Sample 
size = 147 defects, limits generalizability.

• Despite limitations, dataset provides real-world traceability 
and reflects day-to-day dev operations.

• Supported by literature: Better data → Better defect 
prediction models [1].



Expected Outcomes

Expected Outcomes and Impact

• Identify conditions, components, and time periods with high 
defect incidence. 

• Trace root causes of recurring issues using structured data.

• Reduce defect density → improves maintainability and user 
satisfaction. 

• Support shorter release cycles, lower maintenance costs, and 
greater trust in public services.



ANALYSIS

Unclassified



Monthly Defect Counts

• Total and major defect counts increased significantly in some months.

• UCL (mean + 1σ) used to flag statistically significant anomalies.

• December 2024 and January 2025 exceeded control limits.

• Root cause: likely due to changes in reporting behavior, not true defect spikes



Defect Counts by Defect Type

• Coding defects = 77% → largest opportunity for quality improvements.

• Other frequent types: functionality, architecture, data.

• Most major defects also stem from coding issues.

• Findings support focus on developer training and code reviews

113

12 8 8
2 2 1 1

77%
85%

90%
96% 97% 99% 99% 100%

0%

20%

40%

60%

80%

100%

120%

0

20

40

60

80

100

120

Pareto Chart

Defect Counts Cumulative Percentage



Defect Counts by Component

• Three components show notably high defect concentration.

• Component E: lower total defects but high % of major issues.

• Component C: most defects, but majority are minör.

• Insight helps prioritize quality actions per component



Defect Counts by Detected Activity

• Most defects detected post-deployment, especially by customers (70 cases).

• System monitoring tools caught 44 issues.

• Indicates room for improvement in early testing phases.

• Early detection reduces customer impact and operational risk



Analysis of Defect Issue Summarries

• Top defect types:

• Null Pointer Exceptions (NPEs) – 26
• Business rule violations – 23
• Query issues – 20

• NPEs often caused by dynamic data 
sources (beyond static analysis).

• Suggest training, improved input 
validation, and business rule alignment.



Key Findings

• Coding defects dominate → prioritize code quality practices.

• High post-release detection → improve test coverage & early
QA.

• Address reporting consistency through training or input
validation.

• Analyze business rule violations for process misalignments



CONCLUSIONS AND FUTURE WORK

Unclassified



Conclusions

Key Conclusions

• Coding defects are the dominant issue, 
especially related to Null Pointer Exceptions 
(NPEs).

• Most major defects were Customer 
Originated, highlighting late detection.

• Components A and B are the most defect-
prone in both total and major categories.

• Frequent business rule violations suggest 
weaknesses in requirement analysis.

Recommendations

• Improve test coverage beyond happy paths, 
including edge cases (e.g. null handling).

• Conduct targeted developer training on code 
robustness and NPE prevention.

• Investigate root causes of business rule 
violations (customer vs. analyst errors).

• Increase analyst involvement in early project 
stages.



Future Work

• Shift from reactive to proactive defect management.

• Integrate additional quality metrics for continuous monitoring.

• Develop a predictive model to anticipate high-risk defects pre-deployment.



REFERENCES



References

[1] Bosu, M.F., & MacDonell, S.G. (2013). Data quality in empirical software engineering: a targeted review. In: 
Proceedings of the 17th International Conference on Evaluation and Assessment in Software Engineering 
(EASE 2013), pp. 171–176.



Thank you


