

DEPARTMENT OF INDUSTRIAL SYSTEMS ENGINEERING AND PRODUCT DESIGN

Geozone-Aware Unmanned Aerial Vehicles (UAV) Path Planning Using RRT* and Jellyfish-Inspired Optimization for Urban Air Mobility (UAM)

Authors: Judit Salvans Baucells, Elham Fakhraian, Ivana Semanjski

Presenter: Judit Salvans Baucells

Master's Student in Industrial Engineering and Operations Research, Ghent University

Judit Salvans Baucells

Judit Salvans Baucells is a master's student in Industrial Engineering at Universitat Politècnica de Catalunya (UPC), currently completing this paper at Ghent University through the Erasmus+ program. Her academic interests include operations research, autonomous systems, and sustainable urban logistics.

Her thesis focuses on geozone-aware UAV path planning for Urban Air Mobility (UAM), integrating RRT* algorithms with bio-inspired optimization. She also has hands-on experience in process optimization, mechanical system design, and regulatory-compliant engineering.

OVERVIEW

Motivation ————————————————————————————————————	03
Objectives ————————————————————————————————————	06
_iteratury Review	07
Methodology ————————————————————————————————————	08
Case Study	11
nput Data —————————————————————————————————	12
Results	14
Conclusions ————————————————————————————————————	19
⁻ uture Work	20

APPLICATIONS

Motivation

- Agriculture
- Search and Rescue

- Delivery Services
- Weather

- Logistics
- Emergency Management

UAV OPERATIONS

Path Planning

Security Viability

• ••

Optimal Path

Motivation

REGULATIONS

Technologies for drones and Vertical Take-Off and Landing (VTOL) aircraft are evolving all the time. As drones and VTOLs are becoming a fixture in all our lives, we at EASA set up rules for flying drones and VTOLs in Europe, to define how they are designed, manufactured and operated. We will also set up rules and standards for a specific type of airspace called U-Space, which will enable drones & VTOLs to fly safely across European skies. In short, we are enabling innovative air mobility with drones and VTOLs.

OBJECTIVES

First Goal	Integrate geozone constraints directly into the path planning process.
Second Goal	Optimization process to improve paths quality.
Third Goal	Test the method in real urban environment.
Fourth Goal	Support future U-space integrations.

LITERARY REVIEW

Graph-Based Algorithms: Dijkstra and A*

Sampling-Based Algorithms: RRT and RRT*

Metaheuristic and Bio-Inspired Algorithms

Methodology

IMPLEMENTATION

Start & Goal

GHENT

UNIVERSITY

- <80m height
- Ground Level
- Rooftop Point

Node Candidate

- 30% Goal Point
- 60% Existing Nodes Surroundings
- 10% Random

- Collision Free
- Between height limits
- Outside Geozones

- Take off maneuver
- Landing maneuver
- Fly over an obstacle

Methodology

Methodology

11

IMPLEMENTATION

• Time limit NUT reached

Jellyfish-Inspired Optimization

- Path Length
- Threat Cost
- Smoothness

Smoothing Process

- Sharp Turns
- Abrupt Direction Changes
- Respect Viability

IMPLEMENTATION

RRT* Tree Constraints

$$isValid(e) = \begin{cases} 1, if \ e \cap O = \emptyset, e \cap G = \emptyset, & h(e) \in [h, H] \\ 0, & otherwise \end{cases}$$

 $e \rightarrow$ candidate edge,

- $0 \rightarrow$ set of obstacle volumes
- $G \rightarrow$ restricted geozones
- $[h, H] \rightarrow$ edge's altitude range.

Jellyfish-Inspired Optimization

$$Score_i = \sum_{k=1}^{3} w_k$$
. normalized_{k.i}

 $w = [w_1, w_2, w_3] \rightarrow$ randomly sampled weight vector

$$\sum_{k=1}^{3} w_k = 1$$

CASE STUDY

Piombino, Italy

DJI Matrice 300 RTK

Input Data

TERRAIN & OBSTACLES DATA

{'NAME': 'sisw-test-area-piombino',

'CLOSED': 'YES',

'PERIMETER': '4.401 km',

'ENCLOSED_AREA': '0.94 sq km',

```
'coordinates': [(10.536867583333333,
42.939028638888885), (10.5340785,
42.93482538888889), (10.52865750000001,
42.9324684444444),
```

••••

(10.5368675833333333, 42.9390286388888885)]}

```
{{ 1: {'CLOSED': 'YES', 'suolo_id':
'RT0201010300340938',
```

..., 'coordinates':

...]},

13: {'CLOSED': 'YES', 'suolo_id': 'RT0201010300341633',

..., 'coordinates':

Regione Toscana

GEOZONES DATA

GHENT

UNIVERSITY

{'title': 'ITA ZoneVersion 31/03/2025 07:25:02', 'description':

↔ 'ITA ZoneVersion - GeoZones[4317] - ATM09[4013]/NFZ[304]/NOTAM[0]',

'geometry': [{
'lowerLimit': 45,
'upperLimit': 120,
'horizontalProjection': {'type': 'Polygon',
'coordinates': [[[10.5552691, 42.942228],

••••

Input Data

EXPERIMENTS

Results

- (10.5375, 42.9361, 30.9) A (10.5313, 42.931, 22.7)
- (10.535, 42.9307, 25.2) B (10.5335, 42.9295, 0.5)
- (10.5326, 42.933, 27.7) C (10.5301, 42.932, 22.9)
- (10.536, 42.9308, 29.5) D (10.5377, 42.9376, 20.5)
- (10.536, 42.9308, 29.5) Ε (10.5377, 42.9376, 20.5)
 - (10.536, 42.9308, 29.5) (10.5377, 42.9376, 20.5)

F

GHENT

UNIVERSITY

(10.5332, 42.9303, 32.1) G

Н

- (10.5384, 42.9339, 0.5)
- (10.5398, 42.9298, 0.5)(10.5314, 42.9289, 34.4)
- (10.5363, 42.9293, 21.5) (10.5336, 42.9349, 28.4)
- (10.5381, 42.9345, 30.6)
- (10.5327, 42.9329, 0.5)
- (10.5333, 42.9320, 0.5)
- (10.5353, 42.9292, 0.5)
- (10.5358, 42.9369, 23.3) Ρ (10.5374, 42.9308, 25.7)
- (10.5375, 42.9361, 30.9) \mathbf{O} (10.5377, 42.9296, 28.1)
- (10.5320, 42.9301, 0.5)Ν (10.5334, 42.9303, 32.1)
- (10.5339, 42.9343, 0.5) Μ (10.5399, 42.9261, 0.5)
- (10.5335, 42.9289, 40.9)(10.5296, 42.9288, 26.1)

16

Results

STEP - SIZE ANALYSIS

Metric	4	8	10	12	14
Success Rate (%)	40	70.62	71.88	79.38	77.5
Execution Time (s)	68.06	45.22	43.55	24.81	25.26
Path Length	4.34*	4.02*	4.0*	4.22*	4.07*
Threat Cost	2.67*	1.32*	0.96*	0.69*	0.6*
Node Count	2.01*	2.01*	1.62*	1.71*	1.39*
Smoothness	6.15*	3.16*	2.64*	2.42*	2.03*

Results

PATH SMOOTHING

RRT Tree 2D - Version vA_best_raw

RRT Tree 2D - Version vA_best_smooth

Results

PATH SMOOTHING

RRT Tree Version vP_best_smooth

Trajectory	Version	Threat*	Nodes*	Smoothness*
А	raw	4.286	2.355	8.167
А	smooth	2.857	0.242	1.085
В	raw	7.143	10	2.484
В	smooth	5.714	0.081	0.487
С	raw	4.286	0.431	0.66
С	smooth	1.429	0.027	0.121
К	raw	2.857	7.51	3.279
К	smooth	2.857	0.188	0.896
L	raw	5.714	1.373	1.8
L	smooth	2.857	0.296	0.283
0	raw	2.857	2.032	4.081
0	smooth	1.429	0.121	0.396
Р	raw	0	4.361	6.722
Р	smooth	0	0.175	0.92

19

GEOZONE-AWARE PATH PLANNING

RRT Tree Version vD_best_raw

RRT Tree Version vE_best_raw

RRT Tree Version vB_best_smooth

20

Results

1

We developed a geozone-aware RRT* algorithm for safe UAV navigation.

2 Jellyfish-inspired multi-objective decision finds the most optimal path.

3 Tests over Piombino showed strong performance in dense environments.

4 The method supports scalable, regulation-compliant urban UAV flights.

FUTURE WORK

1 Define complex zones where the algorithm shows low success rates.

2 Use zone analysis to plan UAV infrastructures like take-off platforms.

3 Integrate real-time weather data to adapt paths dynamically.

4 Extend the algorithm to multi-drone coordination scenarios.

- 5
- Test in other urban environments to validate scalability.

THANK YOU

ACKNOWLEDGMENT

This work was supported by the funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101007134 and Regional and community funding: Special Research Fund's project Robust and Trustworthy Smart Mobility Systems (grant number B0F/STA/202209/004).

JUDIT SALVANS BAUCELLS

judit.salvansbaucells@ugent.be

ELHAM FAKHRAIAN

elham.fakhraian@ugent.be

www.ugent.be

