



Sicherheit in Technik und Chemie

06.-10.07.2025

# MEASUREMENT AND TESTING METHODS FOR SENSORS IN HYDROGEN TECHNOLOGIES Carlo Tiebe, Mehmet E. Bayat

carlo.tiebe@bam.de, mehmet-emin.bayat@bam.de

# **Self Introduction**





| 2000 to 2006 | Studying Chemistry,                                                  |
|--------------|----------------------------------------------------------------------|
| 2006 to 2010 | Focus: Analytic<br>PhD Thesis, BAM and<br>TH Imonau (Don, Chemistry) |
| 2010 to 2016 | TU Ilmenau (Dep. Chemistry)<br>Post Doc at BAM                       |
| 2016         | Certification for Quality                                            |
|              | Management and Auditor                                               |
| 2017         | Scientist at BAM and                                                 |
|              | Test Laboratory for Gas and                                          |
|              | Humidity Sensors                                                     |
| 2020         | Member of                                                            |
|              | Competence Center                                                    |
|              | H2Safety@BAM for safe hydrogen                                       |
|              | technologies                                                         |

# Hydrogen – our contribution to safety



# **Competence Center** H<sub>2</sub>Safety@BAM

## URL

https://www.bam.de/Content/EN /Standard-Articles/Topics/Energy/Hydrogen/ hydrogen.html

# Building trust in the energy carriers of the future!

#### **Competence Centre H<sub>2</sub>Safety@BAM**



# Hydrogen – our contribution to safety (SensRef)





T. Hübert (BAM), L. Boon-Brett (JRC), W. J. Buttner (NREL) Sensors for Safety and Process Control in Hydrogen Technologies, **2016**, 1st Edition, CRC Press, <u>https://doi.org/10.1201/b19141</u>.

- Sensors provide information on gas composition, which is essential for safety and process control
- Authors: T. Hübert (BAM), L. Boon-Brett (JRC), W. J. Buttner (NREL) with contributions of E. Weidner (JRC), V. Palmisano (JRC), U. Schmidtchen (BAM), B. Fellmuth (PTB)
  - H2Safety@BAM https://www.bam.de/Navigation/EN/Topics /Energy/Hydrogen/hydrogen.html

# Hydrogen



| Attribute                 | Specific information                                                        |                             |
|---------------------------|-----------------------------------------------------------------------------|-----------------------------|
| <u>Hydrogen</u>           | H <sub>2</sub>                                                              | 3                           |
| CAS No.                   | <u>1333-74-0</u><br>EU: <u>REACH</u>   DE: <u>GefStoffV</u>                 | BAM Medienteam, 13D4-13.jpg |
| Substance group           | inorganic gas                                                               |                             |
| Properties                | colourless, odourless<br>(compressed) gas,<br>liquid at specific conditions |                             |
| Chemical characterisation |                                                                             |                             |



# Tasks for Sensors in Hydrogen Technologies

# Safe use of Hydrogen





#### Specific safety issues in air

 Dependency of pressure on lower (LEL) and upper explosion limit (UEL)



Oxidiser  $O_2$  in Air / mol-%

M. Molnárné, T. Schendler, V. Schröder, in Sicherheitstechnische Kenngrößen, Vol. 2, Wirtschaftsverlag NW, Bremerhaven, 2008, pp. 1-539. Data available on: <u>https://www.chemsafe.ptb.de/home</u>

# What is a gas sensor?



A **gas sensor** is a technical component that can record certain physical or chemical properties (temperature, pressure, material properties qualitatively or quantitatively as a measured variable). These quantities are measured by means of physical or chemical effects and converted into quantities that can be processed further (usually electrical signals).



Different gas and humidity sensors compiled by M. Hofmann, 2019.

**Tasks for Sensors in Hydrogen Technologies** 

#### What?

- Safety protection
- Leak detection
- Process control •

#### Why?

- Indicate a hazardous condition
- Provide warnings or alarms for out-of-limits conditions
- Monitor and control operation
- Provide performance data
- Hydrogen production
- Transport and disposal of hydrogen
- Infrastructure
- Energetic use of hydrogen
- Hydrogen used for non energetic reasons







### Where?





# **Performance of gas sensors**

# Definition



| Definition [ISO 26142] | Description                                                                                                                                                                |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensing element        | performs the basic sensing operation and<br>provides a meaurable, continously changing<br>physical quanity in correlation to the<br>stimulus, e. g. hydrogen concentration |
| Sensor                 | combination of one or more sensing elements together with electronic circuits                                                                                              |
| Detection Apparatus    | higher-level system as a stand-alone<br>instrument system, handheld device or a<br>fixed site device                                                                       |

[ISO 26142:2010, Hydrogen detection apparatus — Stationary applications, https://www.iso.org/standard/52319.html]

#### To ensure accurate results, it is

advisable to conduct sensor testing under controlled conditions, focusing on identifying specific properties and quantifying performance criteria.

Produced devices undergo calibration with at the factory calibration or according to ISO/IEC 17025, followed by testing/validation prior to intended use. Subsequent inspections shall be repeated in appropriate intervals.

# **Quality Infrastructure for Sensor Testing**





# Volumetric preparation of gas mixtures for determining the characteristics of gas sensors





Dynamic preparation of gas mixtures

- For sensor testing for the determination of non-explosive gas mixture composition (in particular hydrogen-, ammonia-, methane-, sulfur dioxide and ethanol mixtures), response time and characteristic curves of gas sensors, gas measuring devices.
- Volumetric preparation of gas mixtures with defined humidification for determining the characteristics of gas sensors, <u>LINK</u>

# Metrological Traceability of Quantification with Certified Reference Materials (CRM)





Production of CRM

Calibration Gas Example and Storage of Primary Gas Standards <u>https://webshop.bam.de/webshop\_de/katalog-1.html</u>

# Test set up: Measuring Cell in Temperature Chamber equipped with Device under Test (DUT)





Measuring Cell ISO-K Cross piece DN160 Volume V = 5.8 L

Gas Inlet: 6 mm stainless steel tube plus temperature sensor

DUT: Schottky Diode Sensor

Gas Outlet: 6 mm PTFE-tube plus temperature sensor



# **Results and discussion**

### Time series of observed test data





Test Temperature is in the range of 19.9 °C to 20.1 °C.

The test gas pressure is 0.98 bar to 1 bar.

The DUT and *in operando* GC-TCD-TCD data shows the cyclic exposure with respect to different hydrogen amounts.

The humidity level is in the range of 0.55  $\mu mol/mol$  to 1  $\mu mol/mol.$ 

# Zoomed: Time series of observed test data Hydrogen Sensor and GC-TCD-TCD





# Calibration curve and deviation with respect to reference GC-TCD-TCD







# Conclusion

# Conclusion



The test results prove the effectiveness of the gas sensor in detecting hydrogen.

It reacts to different amounts of hydrogen in the air and reliably returns to zero.

The reference procedure uses GC-TCD-TCD and dew point hygrometer as transfer standards for validation and quantification of the generated gas mixtures.

A fundamental basis for modern and efficient quality assurance of gas sensors.

# Acknowledgement



The authors thank the initiative QI Digital initiative for financial support and Jessica Erdmann, Harald Kohlhoff, and Jörg Schlischka for technical support. **QI** DIGITAL <u>www.qi-digital.de</u> <u>www.bam.de/qi-digital</u>