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Introduction
Federated Learning

Federated Learning (FL) is a machine learning approach that enables multiple devices
(clients) to train a shared model cooperatively without exchanging raw data, under the
coordination of a central node (server).

A communication overhead is introduced in FL, since each client must communicate its
local gradient to the server at each training iteration.

Gradient compression and gradient quantization are two techniques commonly used
to minimize data transmission and reduce the communication overhead in the distributed
training of deep neural networks.
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Introduction
Contributions

Quantized Rank Reduction (QRR): a communication-efficient FL scheme that
leverages two techniques: low-rank approximation of neural network gradients and
gradient quantization.

Experimental results demonstrate that QRR yields significant communication savings
with a small deterioration on the model’s accuracy, validating the practical effectiveness
of the proposed method in network-critical applications.
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Quantized Rank Reduction
Low-Rank Structure of Gradients

Low-rank approximation is a suitable form of compression for neural network gradient
matrices and tensors, as those gradients are generally low-rank and have few dominant
singular values, especially in overparameterized networks1.

Figure 1: Magnitude of the singular values of the gradient of a fully connected layer.

1
Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guarantees for neural networks via harnessing the low-rank structure of

the Jacobian. 2019. arXiv: 1906.05392 [cs.LG]. url: https://arxiv.org/abs/1906.05392
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Quantized Rank Reduction
Gradient Matrix Compression

Consider the weights of a fully connected layer WWW ∈ RDout×Din along with the scalar loss
function J(·)

J(θθθ) =
∑
c∈C

fc(θθθ) (1)

where θθθ = (WWW , bbb).

We approximate the gradient ∂J
∂WWW as

∂J

∂WWW
≈ UUUv ΣΣΣv VVV

⊤
v , (2)

where UUUv ∈ RDout×v , ΣΣΣv ∈ Rv×v and VVV v ∈ RDin×v are the Singular Value Decomposition
(SVD) components of ∂J

∂WWW , retaining only the v largest singular values.

The client transmits only UUUv , VvVvVv and the diagonal elements of ΣΣΣv .
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Quantized Rank Reduction
Gradient Tensor Compression

In a convolutional layer, the weights are represented by a 4D tensor W ∈ RCout×Cin×H×W ,
where Cout is the number of output channels, Cin is the number of input channels and
H ×W is the size of the convolutional filter.

We approximate the gradient ∂J
∂W via the Tucker decomposition as

∂J

∂W
≈ G ×1 FFF 1 ×2 FFF 2 ×3 FFF 3 ×4 FFF 4, (3)

where ×n denotes the mode-n product of a tensor and matrix, and G ∈ Rr1×r2×r3×r4 ,
FFF 1 ∈ RCout×r1 , FFF 2 ∈ RCin×r2 , FFF 3 ∈ RH×r3 and FFF 4 ∈ RW×r4 , with ri being the reduced
ranks along each mode.

The client transmits the core tensor G and the factor matrices FFF i , i = 1, 2 . . . , 4.

Kritsiolis and Kotropoulos IARIA 2025 Congress July 9, Venice, Italy 8 / 25



Quantized Rank Reduction
Compression Efficiency

For the truncated SVD to be more communication-efficient than transmitting the full
gradient, we need

Dout · ν + ν + Din · ν < Dout · Din. (4)

Similarly, for the Tucker decomposition to be more communication-efficient than
transmitting the full gradient, we need

r1 · r2 · r3 · r4 + Cout · r1 + Cin · r2 + H · r3 +W · r4 < Cout · Cin · H ·W . (5)

The gradient of the loss function with respect to (w.r.t.) the bias vector for each client is
not compressed.
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Quantized Rank Reduction
Gradient Quantization

The federated gradient descent step with quantization is

θθθk+1 = θθθk − α
∑
c∈C

Q
(
∇fc(θθθ

k)
)
. (6)

We use LAQ’s2 quantization scheme, which maintains a running aggregated quantized
gradient

∇k = ∇k−1 +
∑
c∈C

δQk
c . (7)

2
Jun Sun, Tianyi Chen, Georgios B. Giannakis, Qinmin Yang, and Zaiyue Yang. “Lazily Aggregated Quantized Gradient Innovation for

Communication-Efficient Federated Learning”. IEEE Transactions on Pattern Analysis and Machine Intelligence 44.4 (2022), pp. 2031–2044. doi:
10.1109/TPAMI.2020.3033286
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Quantized Rank Reduction
Gradient Quantization

The scheme projects each gradient element onto a uniform grid that is centered at the
previous quantized updated Qc(θθθ

k−1) and has a radius of Rk
c = ||∇fc(θθθ

k)−Qc(θθθ
k−1)||∞.

Each element is encoded using β bits as

[qc(θθθ
k)]i =

⌊
[∇fc(θθθ

k)]i − [Qc(θθθ
k−1)]i + Rk

c

2τRk
c

+
1

2

⌋
, (8)

with τ := 1/(2β − 1) defining the discretization interval.

The server can recover the gradient update of client c as

Qc(θθθ
k) = Qc(θθθ

k−1) + δQk
c , (9)

with δQk
c = Qc(θθθ

k)− Qc(θθθ
k−1) = 2τRk

c qc(θθθ
k)− Rk

c 111, where 111 = [1, 1, . . . , 1]⊤.
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Quantized Rank Reduction
QRR Algorithm

The gradient descent step becomes

θθθk+1 = θθθk − α
∑
c∈C

QRRc

(
θθθk
)
,

QRRc

(
θθθk
)
= C−1

(
Q
(
C
(
∇fc(θθθ

k)
)
,C
(
∇fc(θθθ

k−1)
))) (10)

Q is the quantization operator, C is the compression operator, and C−1 is the
decompression operator. Each client applies the operators C and Q to compress and
quantize its gradient update, while the server receives the updates and applies C−1 to
decompress them and perform gradient descent.
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Quantized Rank Reduction
QRR Algorithm

For each client c and each model parameter P in the clients’ gradient updates,

if P =WWW k
c ∈ RDout×Din :

∂J

∂WWW k
c

≈ Q(UUUk
c ) Q(ΣΣΣk

c ) Q(VVV k
c )

⊤, (11)

if P = Wk
c ∈ RD1×D2×...×DN :

∂J

∂Wk
c

≈ Q(Gk
c )×1 Q((FFF 1)

k
c )×2 Q((FFF 2)

k
c )×3 . . .×N Q((FFFN)

k
c ), (12)

if P = bbbkc ∈ RDout×1 :

∂J

∂bbbkc
≈ Q(

∂J

∂bbbkc
). (13)
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Quantized Rank Reduction
QRR Algorithm

Algorithm 1 QRR

1: Input parameters: α, p, β
2: Initialize: θθθ0, and {Q(C(∇fc(θθθ

0))}c∈C to 000
3: for k = 1 to K do
4: Server transmits θθθk to all clients
5: for c = 1 to C do
6: Client c computes ∇fc(θθθ

k)
7: for each parameter P in ∇fc(θθθ

k) do
8: if P ∈ RDout×Din then
9: Approximate P according to (11)

10: else if P ∈ RD1×...×DN then
11: Approximate P according to (12)
12: else if P ∈ RDout then
13: Approximate P according to (13)
14: end if
15: end for
16: Client c transmits the compressed and quantized gradients to the server
17: Server updates global model using (10)
18: end for
19: end for
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Experimental Results
Experiment 1 - MLP and MNIST

Table 1: Results of QRR compared to SLAQ and SGD for an MLP applied to the MNIST dataset.

Algorithm # Iterations # Bits # Communications Loss Accuracy Gradient ℓ2 norm
SGD 1000 5.088× 1010 10000 0.376 89.92% 2.297

SLAQ 1000 1.089× 1010 8559 0.378 89.89% 2.026

QRR(p = 0.3) 1000 4.798× 109 10000 0.415 89.20% 1.945

QRR(p = 0.2) 1000 3.205× 109 10000 0.441 88.93% 2.846

QRR(p = 0.1) 1000 1.612× 109 10000 0.501 88.22% 1.866

QRR achieves an accuracy of around 1-2% lower than SGD and SLAQ.

QRR transmits 3.16-9.43% of the bits transmitted by SGD and 14.8-44.05% of the bits
transmitted by SLAQ, depending on the choice of the parameter p.

Kritsiolis and Kotropoulos IARIA 2025 Congress July 9, Venice, Italy 15 / 25



Experimental Results
Experiment 1 - MLP and MNIST

(a) Loss vs. iterations (b) Gradient ℓ2 norm vs. Iterations (c) Accuracy vs Iterations

(d) Loss vs. Bits (e) Gradient ℓ2 norm vs. Bits (f) Accuracy vs. Bits

Figure 2: Loss, gradient ℓ2 norm, and accuracy plotted against the number of iterations and bits for the MLP network and
the MNIST dataset.
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Experimental Results
Experiment 2 - CNN and MNIST

Table 2: Results of QRR compared to SLAQ and SGD for a CNN applied to the MNIST dataset.

Algorithm # Iterations # Bits # Communications Loss Accuracy Gradient ℓ2 norm
SGD 1000 1.302× 1011 10000 0.263 92.56% 21.154

SLAQ 1000 2.653× 1010 8151 0.251 92.70% 9.769

QRR(p = 0.3) 1000 1.022× 1010 10000 0.291 91.49% 19.287

QRR(p = 0.2) 1000 6.650× 109 10000 0.335 89.91% 42.026

QRR(p = 0.1) 1000 3.588× 109 10000 0.330 90.48% 30.455

QRR achieves an accuracy of around 1-3% lower than SGD and SLAQ.

QRR transmits 2.75-7.84% of the bits transmitted by SGD and 13.52-38.52% of the bits
transmitted by SLAQ, depending on the choice of the parameter p.
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Experimental Results
Experiment 2 - CNN and MNIST

(a) Loss vs. iterations (b) Gradient ℓ2 norm vs. Iterations (c) Accuracy vs Iterations

(d) Loss vs. Bits (e) Gradient ℓ2 norm vs. Bits (f) Accuracy vs. Bits

Figure 3: Loss, gradient ℓ2 norm, and accuracy plotted against the number of iterations and bits for the CNN and the
MNIST dataset.
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Experimental Results
Experiment 3 - Small VGG-Like CNN and CIFAR-10

Table 3: Results of QRR compared to SLAQ and SGD for a VGG-like CNN applied to the CIFAR-10 dataset.

Algorithm # Iterations # Bits # Communications Loss Accuracy Gradient ℓ2 norm
SGD 2000 3.52× 1011 20000 1.213 56.72% 6.246

SLAQ 2000 7.72× 1010 17548 1.242 55.73% 5.493

QRR 2000 1.17× 1010 20000 1.441 47.57% 5.088

Evenly spaced values in [0.1, 0.3] were assigned to the p parameter of each client to
demonstrate that p can be chosen based on the client’s connection speed and the amount
of data we want transmitted from that client.

QRR achieves an accuracy of around 8–9% lower than SGD and SLAQ.

QRR transmits 3.34% of the bits transmitted by SGD and 15.26% of the bits transmitted
by SLAQ.
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Experimental Results
Experiment 3 - Small VGG-Like CNN and CIFAR-10

(a) Loss vs. iterations (b) Gradient ℓ2 norm vs. Iterations (c) Accuracy vs Iterations

(d) Loss vs. Bits (e) Gradient ℓ2 norm vs. Bits (f) Accuracy vs. Bits

Figure 4: Loss, gradient ℓ2 norm, and accuracy plotted against the number of iterations and bits for the VGG-like CNN
and the CIFAR-10 dataset.
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Experimental Results
Error Analysis

(a) Low-rank approximation error. (b) Quantization error of the
diagonal of ΣΣΣ.

(c) Quantization error of UUU.

(d) Quantization error of VVV . (e) Final error.

Figure 6: Low-rank approximation and quantization errors of the gradient of a fully connected layer and its SVD.
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Experimental Results
Error Analysis

(a) Low-rank approximation error. (b) Quantization error of G. (c) Quantization error of FFF 1. (d) Quantization error of FFF 2.

(e) Quantization error of FFF 3. (f) Quantization error of FFF 4. (g) Final error.

Figure 8: Low-rank approximation and quantization errors of the gradient of a convolutional layer and its Tucker
decomposition.
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Conclusions
Conclusions

1 Combining quantization with compression greatly reduces communication costs in
federated learning.

2 SVD’s robustness allows low-rank gradient compression paired with quantization, with
final error mainly from low-rank approximation.

3 Low-rank approximation error depends on retained rank (p), dataset complexity, and
network overparameterization.

4 QRR drastically cuts bits needed for gradient updates versus SGD and LAQ, while
maintaining comparable model performance.

5 QRR’s convergence is provable under biased gradients, converging near the optimum
depending on compression-induced bias.
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GitHub Code

The code for the proposed framework can be found at:

https://github.com/Kritsos/QRR-code

or by scanning the QR code:

Figure 9: QR code to GitHub.
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Thank You!

Thank you very much for your attention.
Q & A?

Email costas@csd.auth.gr
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