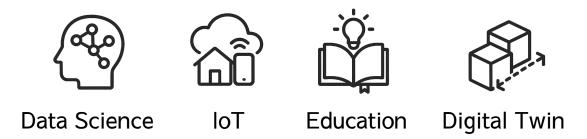


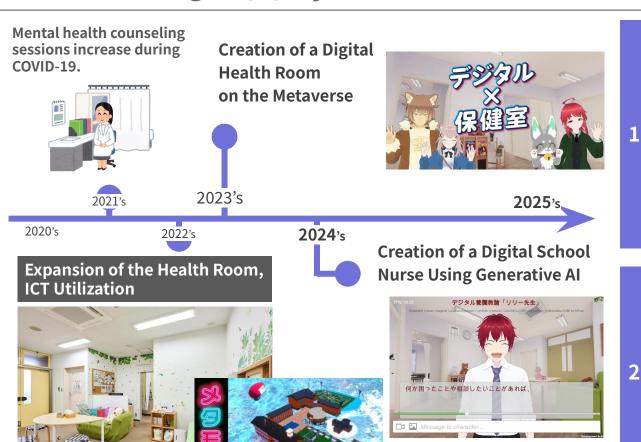
School Health Dialogue A Prompt-Expansion and Response-Visualization Framework

Hayato Tomisu¹· ², Kazue Yamamura³, Junya Ueda⁴, Tsukasa Yamanaka¹

¹Ritsumeikan University ²Shiga University ³Ritsumeikan Moriyama Junior ana Senior High School ⁴ImpactLab tomisu@fc.ritsumei.ac.jp (Hayato Tomisu)


Hayato Tomisu from Shiga, Japan

Affiliation


Ritsumeikan University Ritsumeikan Global Innovation Research Organization Visiting Researcher

Shiga University Graduate School of Data Science Ph.D. Student

Research Topic

Our research group project

More personal conversations with AI avatars and transparent visualization of conversation contexts

Chatbot and Auto Prompting

Answer

Symptom-node DB

Chatbot interface & API

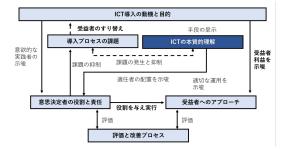
ChatLLM

(Model: 40-min)

Students

Self

Solf


Solf

Solf file

Solool Nurse

Systems:

Modeling Methods for Establishing ICT in Educational Settings

- 1. Background
- 2. Proposed Method
- 3. Evaluation and Results
- 4. Conclusion

Background

Background - Introduction

+52.6%

Increase in infirmary visits (2019-2021)

[Yamamura, 2023]

Key Problem

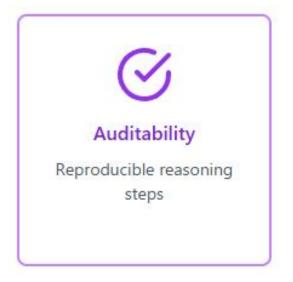
- Adolescents express symptoms vaguely
- High cognitive burden on school nurses
- Rapid severity decisions from incomplete information

I don't feel good...

(I'm actually being bullied. Prompt extension techniques are being explored as a derivative of Chain-of-Thought. [Zhang et al., 2023; Zhou et al., 2023; Wei et al., 2022; Wang et al., 2023]

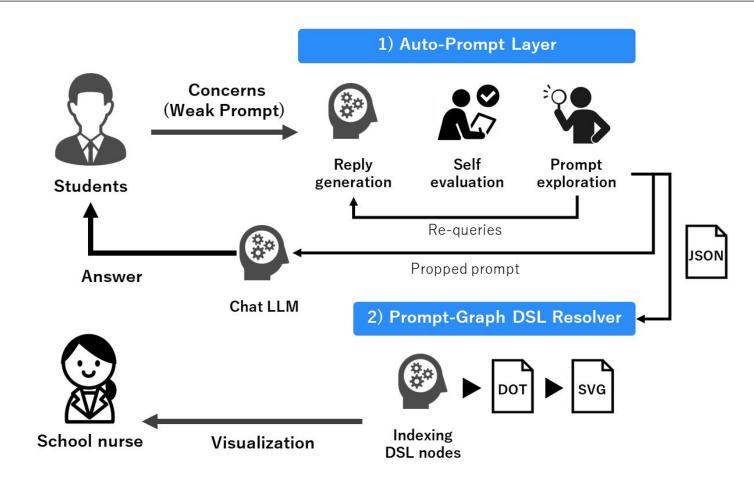
Research is being conducted on techniques that use graphs to visualize reasoning paths, thereby organizing thoughts in an easily understandable manner. [Li et al., 2025; Cao, 2024; Yao et al., 2023]

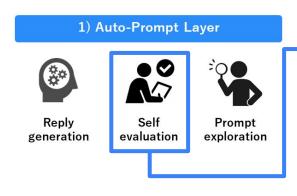
Gap: Existing work evaluated mainly on synthetic Q&A or programming tasks


- No work targets the ambiguity of adolescent health communication
- No integration of safeguarding needs and workflow constraints

[Objective]

Develop an automated AI chatbot that transforms ambiguous student utterances into structured, explainable dialogue flows while reducing cognitive burden on school nurses.





Proposed Mehod

Proposed Method: Two-Layer Framework

Layer 1: Auto-Prompt Expansion

Self Evaluation Scoring

Score =
$$w_c C + w_e E + w_s S$$

C (Coverage): Fraction of filled slots $C := coverage(J) = \frac{\# \text{ filled slots}}{4}$

State $s = \langle u, J \rangle$: Current prompt u + slot vector J

E (**Empathy**): Cosine similarity to empathy prototype vector

S (Safety): Binary check: 1 if safe, 0 if unsafe

Acceptance criterion: Score $\geq \tau$ (threshold)

Layer 1: Example Walkthrough

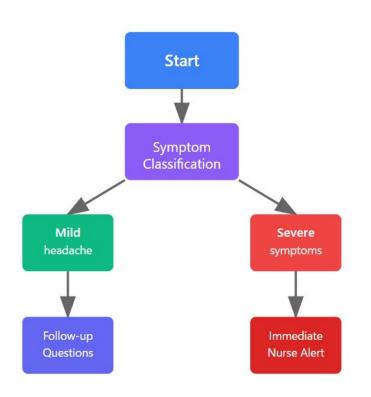
Original Student Utterance: "My head feels heavy and a little queasy"

↓ Expansion

First Pass - Slot Extraction:

Coverage C = 3/4 = 0.75

↓ Apply APPEND_ASK and Compete slots

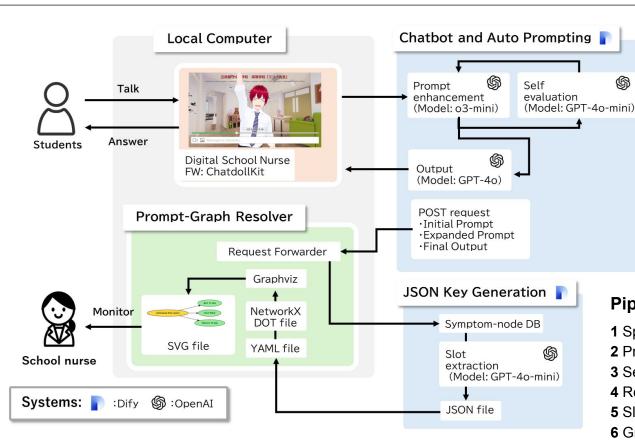

System asks clarification: "How long have you been feeling this way?"

Complete Slot Vector J*: symptom: headache, intensity: mild, duration: 15min, coSymptom: nausea

→ Ready for Layer 2 mapping

Layer 2: Prompt-Graph DSL Resolver

Deterministic Decision Graph


Key Features: Slot vector $J^* \rightarrow$ unique path P

Breadth-first predicate evaluation

Visual Subgraph GP: Updates at every turn Shows current node + 2-hop neighbors

Just looking at the Al's response takes time, but seeing this makes it clear at a glance what's wrong and what should be done!

Pipeline (7 steps):

1 Speech → Text

S

- 2 Prompt enhancement (o3-mini)
- **3** Self-evaluation (GPT-4o-mini)
- 4 Response generation (GPT-4o)
- 5 Slot extraction → JSON
- **6** Graph rendering → SVG
- 7 Avatar speaks + nurse dashboard updates

Evaluation and Results

Evaluation Procedure

Evaluation 1: Prompt Expansion Quality

Data: 50 Student Complaints

20 complaints from school nurse handbooks

30 ambiguous examples mined from social media and Q&A platforms

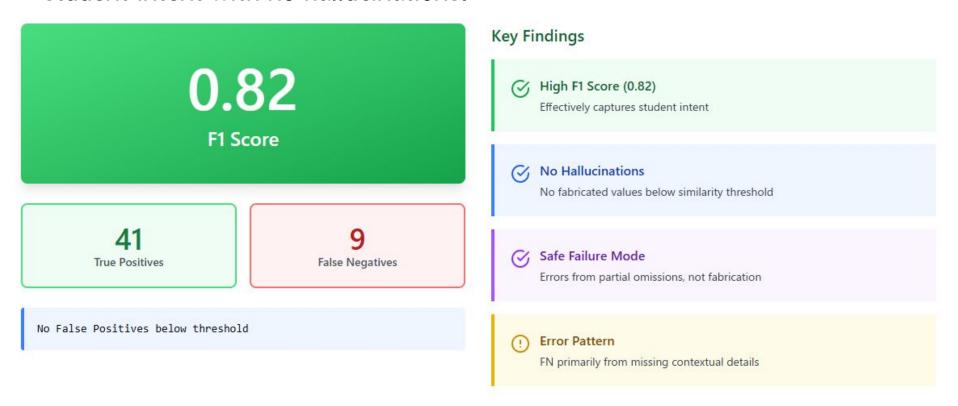
Procedure: Cosine similarity using Sentence-BERT (all-mpnet-base-v2)

Evaluation 2: Answer Quality Assessment

Data: 50 Generated Responses

Procedure: Mean scores computed for each dimension across all 50 responses

compared by exemplary nurse responses created by domain expert


Evaluation 3: Slot Extraction Performance

Data: 50 Slot Extractions (200 total slots)

Procedure: Exact string match per slot from generated sentences by confusion matrix

Results: Prompt Expansion

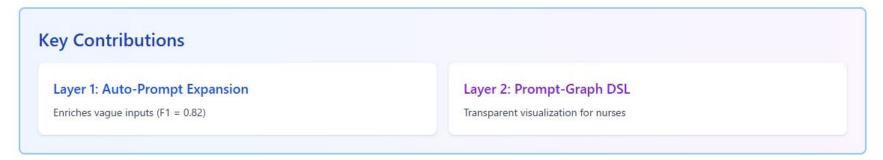
Auto-prompt expansion achieved strong performance, effectively capturing student intent with no hallucinations.

Results: Answer Quality (Rubric-based)

The system demonstrated consistently empathetic tone, appropriate for adolescent communication. However, results reveal opportunities for improvement in medical specificity and follow-up guidance.



Areas for Improvement
 Lower accuracy (3.63) reveals gaps in medical specificity
 Completeness (3.71) indicates missing follow-up guidance
 Need better clinical depth in responses


Results: Slot Extraction Challenge

Error analysis revealed that lexical variation in student expressions requires controlled vocabularies and synonym normalization for improved performance.

Conclusion

Achieved by This Research

- Reduces cognitive burden on school nurses
- Maintains human oversight

Future Work

- Controlled vocabularies & synonym normalization
- Post-editing rules & supervised adapters
- Long-term field validation & health outcomes