

Energy Management of a Surface Water Heat Pump Powered by Wind and a Battery System

Joyce Assaf, Mamadou-Baïlo Camara, Damien Guilbert, and Brayima Dakyo

Presenter: Joyce ASSAF

joyce.assaf@univ-lehavre.fr

1

MERS Team – GREAH ULHN

- Third-year Ph.D. candidate in the MERS team at the GREAH laboratory, Université Le Havre Normandie.
- My research develops an advanced energy management strategy for a surface water heat pump powered solely by renewable energy sources (PV, wind, and battery storage).
- I am actively contributing to WaterWarmth a European Interreg North Sea Region project across 5 countries deploying and validating this multi-energy system to decarbonize heating networks.

MERS Team - GREAH ULHN

- The **Mastery** of **Renewable Energies** and **Storage Systems** group focuses on advanced management of renewable energy within power networks.
- The goal is to develop intelligent energy management methods for hybrid and marine renewable systems.

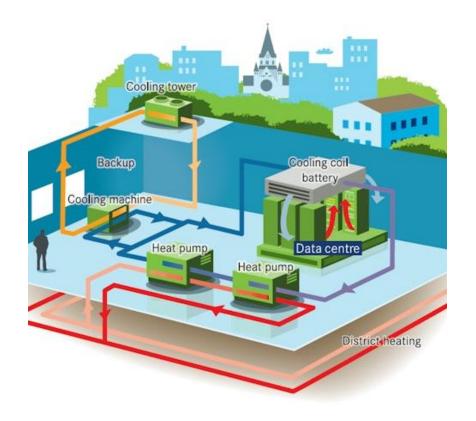
Keywords: renewable energy, wind, offshore, storage, microgrids, embedded systems, real-time control.

Integration of intermittent sources through optimized control and storage

Microgrid operation and real-time energy flow optimization

Modeling of electrochemical and hybrid storage systems considering degradation and reliability

- Introduction & Background
- Literature Gaps & Motivations
- Key Contributions
- System Configuration & Inputs
- Control Strategy
- Simulation Results
- Conclusions
- Future Work



1) Introduction & Background

The **heating** sector represented 77.6% of the final energy consumed by households in **2023**.

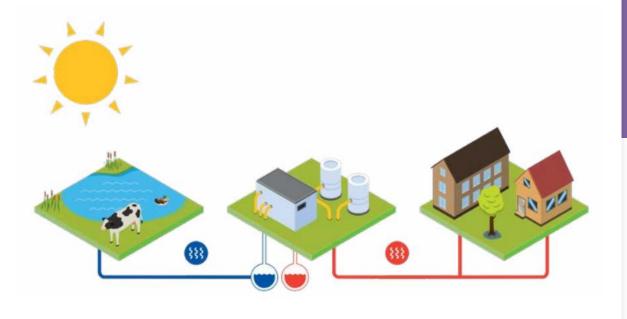
67% of district heat in the EU met by fossil fuels in 2023.

##HPs have emerged as key solutions to decarbonize the heating sector as they consume 25% less energy.

GREAH UR 3220 Research lab **HEAT PUMP** 2nd heat exchanger 1st heat exchanger Compressor SOURCE: WATER EVAPORATOR CONDENSER SPACE HEATING / HOT Expansion valve

1) Introduction & Background

- Air-source HP
- Ground-source HP
- Water-source HP (including surface water, wastewater, etc.)



What is aquathermal energy?

It is the extraction, storage and distribution of heat from water. Within aquathermal energy there are three different main sources to extract heat from: waste water, drinking water and surface water.

With the help of a heat exchanger, warmth is extracted from a source and with the help of a heat pump this energy is used to bring water to an suitable temperature for heating and hot water supply. Aquathermal energy can also be used to cool buildings

1) Introduction & Background

2) Literature Gaps & Motivations

Lack of detailed electrical modeling of hybrid WT-BESS-SWHP systems

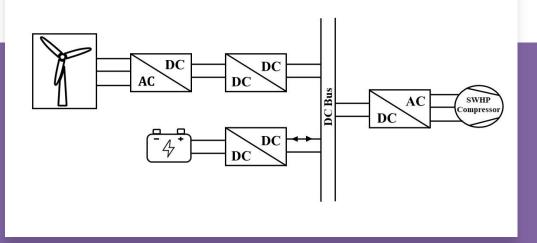
Neglect of DC-bus voltage dynamics and system-level control

Limited attention to realistic operating conditions

3) Key Contributions

- Simulation of a full hybrid WT–BESS–SWHPs system under realistic climatic and thermal demand conditions
 - Dual-loop control of the BESS converter to maintain DC-bus voltage stability and ensure dynamic power flow balancing
- Detailed performance analysis of the system's electrical and thermal interactions, demonstrating suitability for decarbonized heating applications

4) System Configuration & Inputs

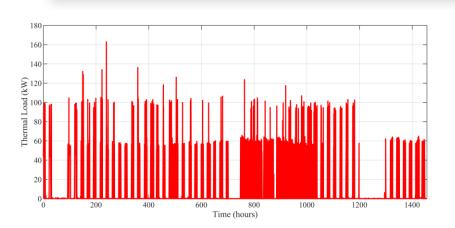


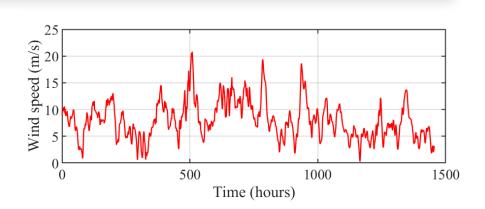
30 kW Lithium Ion

BESS

Two CIAT DYNACIAT LG 300A water-towater HPs operating in parallel & providing 90 kW nominal heat capacity

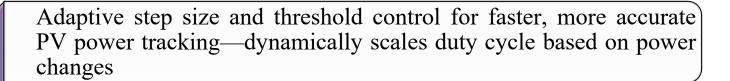
SWHP





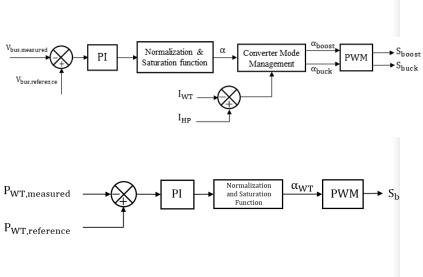
Simulation uses measured data from March 7 to May 7, 2024, at the 'Le Cano Ouistreham', Normandie, France pilot site:

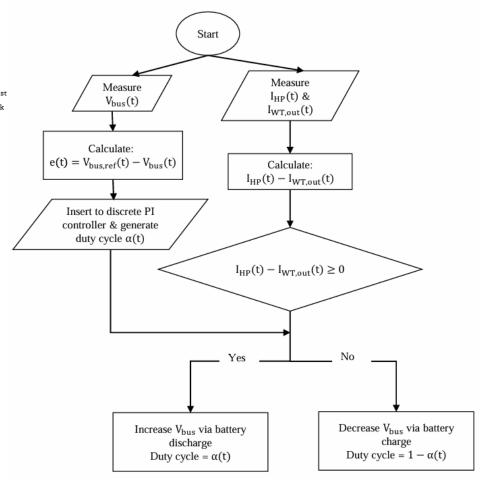
- Windspeed: Max: 20 m/s, frequent drops below 10.9 m/s
- Sample time: 5 second intervals



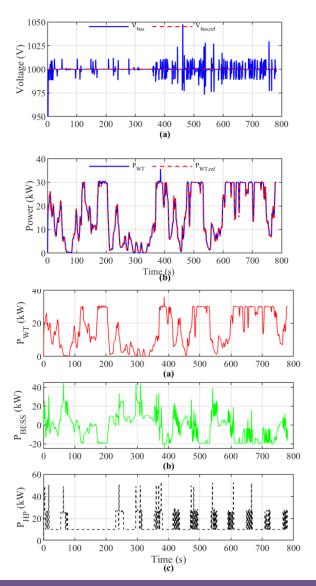
5) Control Strategy

Outer DC-bus voltage regulation combined with inner current tracking ensures dynamic power flow balancing


Buck-boost operation charges during excess generation, discharges when demand exceeds PV output



5) Control Strategy



6) Simulation Results

Simulation Parameters		
Switching frequency		10 kHz
$V_{ m bus,reference}$		1kV
Power Ranges		
WT	0-35 kW	
BESS	−20 ; 45 kW	
SWHP	0-52 kW	

6) Simulation Results

Voltage Tracking Settling Time Current Tracking Power Balance

RMS error for DCbus voltage regulation at 1000V reference

DC-bus voltge stabilized within \pm 5%

Maximum voltage overshoot

RMSE between generation & demand showing effective coordination

7) Conclusions

High-Resolution Simulation

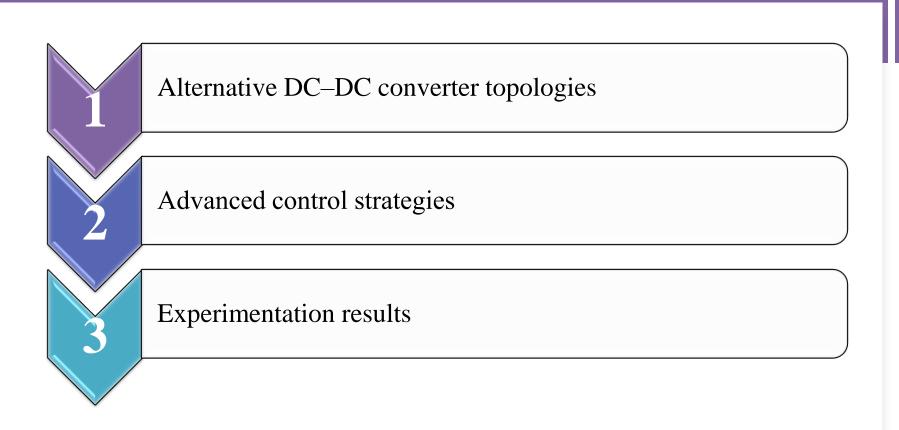
High-resolution thermal load data combined with realistic climatic variations

Robust Control Strategy

DC-bus stability & dynamic power flow balance

Performance Validation

Suitability for decarbonized heating applications,



8) Future Work

