Brains Without Brawn: Evaluating CPU Performance for Code Generation with Large Language Models

Miren Illarramendi¹ Joseba Andoni Agirre¹ Aitor Picatoste² luan Ignacio Igartua²

> ¹Software and Systems Engineering Research Group ²Circular Economy and Industrial Sustainability Faculty of Engineering, Mondragon University, Spain

> > IARIA Conference – 2025

Unibertsitatea Faculty of Engineering

Presenter: Miren Illarramendi millarramendi@mondragon.edu

Presenter Bio

Miren Illarramendi

Lecturer Researcher, Mondragon University Researcher in the *Software and Systems Engineering*

Research interests:

Research Group.

Sustainable AI and Green Computing

Code generation with LLMs

Energy-aware software development

DevOps integration with environmental monitoring (CodeCarbon, MLflow)

Autonomous systems reliability

Autonomous systems runtime monitoring

Research Group & Current Projects

Software and Systems Engineering Research Group

Faculty of Engineering – Mondragon University

Key Research Areas:

- Green and Sustainable AI
- LLM efficiency in low-resource environments
- Al for industrial digitalization
- ACPSs: Autonomous CPSs
- Energy-aware MLOps/DevOps pipelines

Current Projects:

- GRECO Elkartek (KK-2024/00090) Al for circular economy
- Ikerketa Taldeak (IT1519-22) Basque Gov't–funded software engineering research
- MSCA-DN HE Innoguard Doctoral Network
- LLM Benchmarking on CPUs This paper's study

We welcome collaboration on sustainable AI, code generation, and green software engineering!

Motivation & Problem Statement

- Large Language Models (LLMs) are transforming software development and software engineering to improve efficiency and quality in the final results but most studies assume GPU availability.
- Many developers or industrial environment only have CPUs (local machines, edge devices, cost-limited cloud).
- **Gap**: Lack of empirical analysis on CPU-only inference for code generation.
- ullet Need to understand trade-offs: accuracy vs. speed vs. energy vs. CO_2 .

Goal: Evaluate LLMs for code generation in CPU-constrained, GPU-free environments.

Evaluated Large Language Models

OpenAl Models (via API):

- gpt-4o
- gpt-4-turbo
- gpt-3.5-turbo
- gpt-4o-mini

Hugging Face Models (via Novita API):

- Mistral-7B-Instruct
- Llama-3-8B-Instruct
- WizardLM-2-8x22B
- Qwen3-235B-A22B

Parameter count ranges from 3.8B to 235B.

All inference performed **remotely** from a local CPU (Intel Core i5-1135G7, Windows 11).

Experimental Setup

Hardware: Intel Core i5-1135G7 @ 2.40 GHz, Windows 11 Pro

Tasks: 5 C programming prompts:

- Prime number check: Prompt: Write a C program that checks if a number is prime. The program validation returns 1 if it is prime and 0 if not. The number to check is 11.
- Greatest of three integers: Prompt: Write a C program that defines three integer variables and prints the greatest of them. The numbers to check are 11, 22, and 33
- Even/odd check
- Absolute difference
- Sum of digits

Methodology:

Each model ran 10 times per task (50 inferences total)

Code validated with gcc for correctness

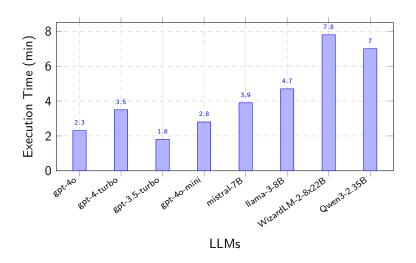
Metrics tracked via **MLflow** (time, accuracy) and **CodeCarbon** (energy, CO₂)

IARIA Conference - 2025

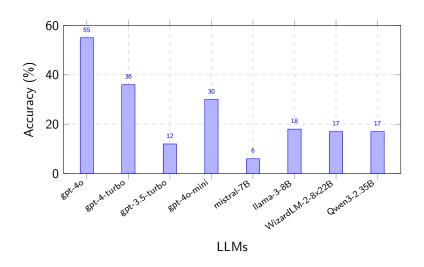
Code

```
LLMCodeGen Green HF.py > ...
```

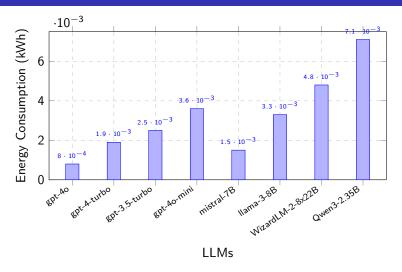
Results: Execution Time vs LLMs



Results: Accuracy vs LLMs

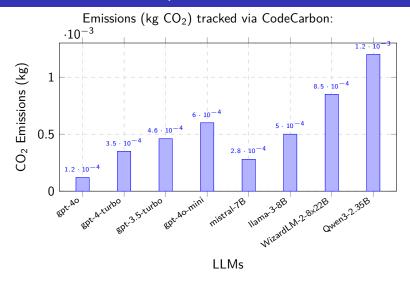


Results: Energy Consumption vs LLMs



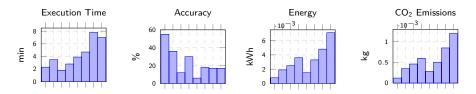
- GPT-4o achieves high accuracy with relatively low energy use.
- Qwen3-235B consumes $9 \times$ more energy than GPT-4o.

Results: CO₂ Emissions per Inference vs LLMs



- Qwen3-235B emits $42 \times$ more CO_2 than GPT-4o.
- Smaller models are not always greener—GPT-40 offers best accuracy-per-emission ratio.

Comparison of LLM Performance Metrics



Models: GPT-4o, GPT-4-turbo, GPT-3.5-turbo, GPT-4o-mini, Mistral-7B, Llama-3-8B, WizardLM-2-8x22B, Qwen3-2.35B

Practical Trade-offs for Developers

Model	Accuracy	Time	CO ₂
GPT-4o	54%	2.3 min	0.00013 kg
GPT-4o-mini	30%	2.8 min	0.00030 kg
Mistral-7B	6%	3.9 min	0.00027 kg
Qwen3-235B	17%	72 min	0.00549 kg

Key insight: **GPT-4o** dominates in accuracy and sustainability. **GPT-4o-mini** is the best compromise for resource-constrained settings.

Limitations

- All inference was performed remotely via APIs (OpenAI, Novita).
- Measurements include **network latency** and backend black-box effects.
- Energy estimates for proprietary models (e.g., GPT-4o) are **approximate** (CodeCarbon uses regional grid data).
- Tasks limited to simple C programs may not generalize to complex software.
- No local CPU deployment yet (planned for future work).

Conclusion

- LLMs exhibit significant trade-offs in CPU-initiated code generation.
- **GPT-40** delivers the best balance of accuracy, speed, and low emissions.
- GPT-4o-mini is a strong alternative when cost or moderate performance is acceptable.
- Massive models like Qwen3-235B are inefficient in this context—slow, inaccurate, and high-emission.
- Sustainable Al requires evaluating models in realistic, GPU-free environments.

"Efficiency isn't optional—it's ethical."

Future Work

Building on this study, we plan to:

- **Expand to other LLMs**: Evaluate newer or alternative models (e.g., Llama-3.1, Claude Sonnet) to assess evolving efficiency trends.
- Broaden task scope: Extend beyond C code generation to include debugging, refactoring, code optimization, and multi-language tasks (Python, JavaScript).
- Local CPU/GPU deployment: Move from remote API inference to local execution on CPU and GPU to measure true hardware-specific performance and energy use—eliminating network and backend black-box effects.
- Model optimization: Apply quantization, pruning, and distillation to reduce resource demands while preserving code generation quality.
- Cost-emission-accuracy modeling: Develop a unified metric to guide model selection based on accuracy, energy, CO₂, and API cost.

Thank You!

For your attention and interest.

millarramendi@mondragon.edu

Mondragon Unibertsitatea

Project or Initiative Logo

