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Introduction

Prediction student dropout, delayed graduation
[da Silva et al., 2022, Caicedo-Castro et al., 2022,
Zihan et al., 2023]
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Introduction

Likelihood of course failure or withdrawal
[Lykourentzou et al., 2009, Kabathova and Drlik, 2021,
Niyogisubizo et al., 2022, Cotié Poturi¢ et al., 2022b,
Cotié Poturi¢ et al., 2022a, Caicedo-Castro et al., 2023b,
Caicedo-Castro et al., 2023a, Caicedo-Castro, 2023,
Caicedo-Castro, 2024b, Caicedo-Castro, 2024a]
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Introduction

» University of Cérdoba
» 3 sessions
» 1 session — 6 weeks

» No single assessment can exceed 40% of the
session grade — at least nine evaluations during a
semester
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Introduction

<> Purposes »:

Reducing the pressure of final exams,

Diversifying assessment strategies,

Encouraging consistent study habits,

Enabling continuous monitoring of learning progress,
Facilitating early interventions, and

Providing timely support to students.
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The university’s Outcome-Based Education (OBE) model
is integrated with the Structure of the Observed Learning
Outcomes (SOLO) taxonomy, which categorizes learning
into five levels:

1. Prestructural (0.0-2.0)

2. Unistructural (2.1-2.9)

3. Multistructural (3.0-3.7)

4. Relational (3.8—4.5)

5. Extended Abstract (4.6-5.0)

To pass an evaluation, a student must achieve at least the
multistructural level
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& Monte Carlo method — RQs &b:

1.

2.

What is the risk of failing a physics course if a student
fails the first session?

What is the risk if a student fails the second session
but passed the first?

. What is the risk if a student fails both the first and

second sessions?
Evaluate curriculum effectiveness [Torres et al., 2021]

Estimate students’ motivation in learning scientific
computing [Caicedo-Castro et al., 2025].
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Research Methodology

» Quantitative approach

» Session 'n’ final grades — 100 students — physics
courses

» University of Cérdoba in 2024

» Recent implementation — Outcome-Based
Education (OBE) framework

» Limited number of students — sparsity of failure
cases in certain session combinations
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Research Methodology

Number of students who failed Physics 1 course when
they have failed at least one session (S1, S2, and S3).

Failed S1 Failed S2 Failed S3 Failed Students
Yes Yes Yes 1
Yes Yes No 7
Yes No No 2
No Yes Yes 0
No Yes No 0

16/42



Research Methodology

Number of students who failed Physics 2 course when
they have failed at least one session (S1, S2, and S3).

Failed S1 Failed S2 Failed S3 Failed Students
Yes Yes Yes 2
Yes Yes No 3
Yes No No 0
No Yes Yes 0
No Yes No 0
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Research Methodology

Number of students who failed Physics 3 course when
they have failed at least one session (S1, S2, and S3).

Failed S1 Failed S2 Failed S3 Failed Students
Yes Yes Yes 0
Yes Yes No 1
Yes No No 0
No Yes Yes 0
No Yes No 0
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Research Methodology

RN
» \_D Monte Carlo simulation

> 3
> ’ > full probability space of possible student

performance outcomes

> ‘g> the small number of observed cases

» Normal distribution: (mean and standard deviation)
— original dataset

» Grades were clipped to fall within the [0, 5] scale
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y is the final course grade
y < 3 — course failure

x; — grade the student obtained in the jth session
(=123

xe X Clo,5?®
x; < 3 — session failure
y= %Z?:1 Xj

P(y<3,x<3)
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» x; — grade the student obtained in the jth session
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» xc X C[0,5®

» x; <3 — session failure

> y= %Z?:1 Xj
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» N x 3-dimensional matrix X € [0, 5]V*3
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» 1(u) = 1 if the condition u is true, and 0 otherwise
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Research Methodology

vV v. v VvYy

N x 3-dimensional matrix X € [0, 5]N*3
SN, 1(yi<BAX;<3)

AR(y <3| x <3)~ 21”11()%5)

1(u) = 1 if the condition u is true, and 0 otherwise
E, 1(y,<3AX, >3)
Z, 1 (y,-<3AX,-/<3)

RR(y < 3| x; < 8) v =g\ %=9 _

zN 1(y;<3AX;>3)
ZN 1(X;>3)
This simulation-based approach enables us to
estimate the conditional risks associated with failing
individual sessions and provides a probabilistic
understanding of academic outcomes based on

partial performance.
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The Research Results and Discussion

Physics I: 11 = 3.03, u2 = 2.98, and 3 = 3.50; 01 = 0.43,
0o = 053, and 03 = 0.58

Course: Physics |

4.5 1

T T T T
1st Session 2nd Session 3rd Session Final Grade

Grades of the students enrolled in the physics | course
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The Research Results and Discussion

Physics II: 11 = 3.17, 12 = 3.20, and 3 = 3.55;
o1 = 0.57, 0, = 0.27, and o3 = 0.47

Course: Physics Il

45 o

17 1 %

3.0 1

7
DY
}7

2.5 o]
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2.0 (o]
T T T T
1st Session 2nd Session 3rd Session Final Grade

Grades of the students enrolled in the physics Il course
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The Research Results and Discussion

Physics IIl: ji; = 3.12, jip = 3.28, and i3 = 3.66;
o1 = 0.41, 0, = 0.36, and o3 = 0.31

Course: Physics Il

45
o

4.0 1

1584

2.5

Grades

T T T T
1st Session 2nd Session 3rd Session Final Grade

Grades of the students enrolled in the physics Il course
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The Research Results and Discussion

Expected Final Grades by Course Obtained from the
Monte Carlo Simulation Results

Course Expected Standard 95% CI
Grade Error

Physics 1 3.178 12x10% [3.178,3.179]

Physics 2 3.305 104 [3.30498, 3.305]

Physics 3 3.354 1.1 x107* [3.353, 3.354]

Standard Error vs. InN

Standard Error (SE)
° °

N = 6,553,600 B
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The Research Results and Discussion

Absolute and Relative Risk by Session and Course

Course Session(s) AR (%) RR (%) 95% CI (RR)
Failed

Phy | S1 4166 2.77 [2.762, 2.777]
S2 43.52 4.05 [4.032, 4.059]
S1and S2 62.93 4.18 [4.172, 4.195]

Phy Il S1 28.11 12.62 [12.532, 12.703]
S2 22.76 2.49 [2.484, 2.505]
StandS2 49.03 22.00 [21.851,22.159]

Phy 11l S1 10.61 17.93 [17.601, 18.267]
S2 1430 8.11 [8.021, 8.196]
StandS2 33.05 55.86 [54.827,56.913]
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The Research Results and Discussion

RR of failing the Physics | course.

RR(y <3| x1 <3)=277,[2.762, 2.777];

RR(y <3| x2 < 3) = 4.05, [4.032, 4.059]; and

RR(y <3| x3 <3)=4.18,[4.172, 4.195].

In all cases, with a 95% confidence interval, the Wald test p-value is
less than 0.05.

Forest Plot Showing Relative Risk of Failure in Physics |
b

RR(y < 3|x1< 3)

RR(y < 3|x2< 3) q

=

¥

RR(y <3|x1<3,x2<3) 1

T T T T T T
1.0 15 2.0 2.5 3.0 3.5 4.0
Relative Risk 26/42



The Research Results and Discussion

RR of failing the Physics Il course.

RR(y <3| x <3)=12.62,[12.532, 12.703];

RR(y <3| x2 < 3) =2.49, [2.484, 2.505]; and

RR(y <3| x3 < 3) =22,[21.851, 22.159].

In all cases, with a 95% confidence interval, the Wald test p-value is
less than 0.05.

Forest Plot Showing Relative Risk of Failure in Physics Il
T
]

RR(y < 3|x1 < 3) ]

RRI(y < 3|xz < 3) 1

-

RRI{y < 3|x1< 3,x2< 3)
0 5 10 15 20
Relative Risk 27/42




The Research Results and Discussion

RR of failing the Physics Ill course.

RR(y <3| x1 <3)=17.93,[17.601, 18.267];

RR(y <3| x2 < 3)=8.11,[8.021, 8.196]; and

RR(y <3| x3 < 3) = 55.86, [54.827, 56.913].

In all cases, with a 95% confidence interval, the Wald test p-value is

less than 0.05.

Forest Plot Showing Relative Risk of Failure in Physics il

RR(y <3|x1 < 3)

RR(y <3|x2 < 3)

RR(y <3|x1<3,x2<3)

K

10 20 30 40 50
Relative Risk 28/42



The Research Results and Discussion

Comparison of AR of Course Failure Between Students
Exposed and Unexposed to Failing Previous Sessions,
with Corresponding RD

Crs. Sess.(s) AR (%) AR (%) RD (%) 95% CI (RD)
Failed exposed unexposed

Phyl St 41.66 15.66 26.621[26.554, 26.688]
S2 43.52 10.76 32.761[32.696, 32.823]
S1and S2 62.93 15.04 47.89'[47.805, 47.975]

Phy Il St 28.11 2.23 25.891[25.829, 25.944]
S2 22.76 9.12 13.63[13.563, 13.707]
S1and S2 49.03 2.23 46.807[46.673, 46.934]

Phy Il S1 10.61 0.59 10.02F [9.961, 10.071]
S2 14.30 1.76 12.541[12.455, 12.623]
S1and S2 33.05 0.59 32.451[32.276, 32.634]

t (p-value < 0.05)
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Conclusions

» Monte Carlo simulation — collected dataset is small
(statistically unstable or undefined) — absolute and
relative risk causing even high variance

» mingyapus Sk of course failure

» Physics Il and lll, failing the first session — higher
risk of overall course failure < discouragement,
reduced engagement, and diminished resilience in
response to subsequent academic challenges

» Imbalance in the difficulty and weight of the course
sessions

» Improved student performance is observed from
Physics | to Physics Il

» Simulation based on the Monte Carlo numerical
method — Support evidence-based decision-making
in academic planning and policy design
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Perspectives

» Collect additional data — other courses and broaden
the scope of academic risk analysis

» Extend the simulation — specific coursework or
evaluation structure assigned in each session

» Adapt the simulation to assume an non-uniform
weighting of sessions — reduce the risk of failure

» Incorporate bootstrap resampling — variability of
simulation parameters — robustness (under data
scarcity)
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The end

That’s all folks
Now starts the Q ’n’ A session

Praise the name of God forever and ever, for he has
all wisdom and power. He controls the course of
world events; he removes kings and sets up other
kings. He gives wisdom to the wise and knowledge to
the scholars. He reveals deep and mysterious
things... (Daniel 2:20-22)
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