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The university’s Outcome-Based Education (OBE) model
is integrated with the Structure of the Observed Learning
Outcomes (SOLO) taxonomy, which categorizes learning
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2. Unistructural (2.1–2.9)
3. Multistructural (3.0–3.7)
4. Relational (3.8–4.5)
5. Extended Abstract (4.6–5.0)
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Introduction

Monte Carlo method→ RQs :
1. What is the risk of failing a physics course if a student

fails the first session?

2. What is the risk if a student fails the second session
but passed the first?

3. What is the risk if a student fails both the first and
second sessions?

▶ Evaluate curriculum effectiveness [Torres et al., 2021]
▶ Estimate students’ motivation in learning scientific

computing [Caicedo-Castro et al., 2025].
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Research Methodology

Number of students who failed Physics 1 course when
they have failed at least one session (S1, S2, and S3).

Failed S1 Failed S2 Failed S3 Failed Students
Yes Yes Yes 1
Yes Yes No 7
Yes No No 2
No Yes Yes 0
No Yes No 0
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Research Methodology

Number of students who failed Physics 2 course when
they have failed at least one session (S1, S2, and S3).

Failed S1 Failed S2 Failed S3 Failed Students
Yes Yes Yes 2
Yes Yes No 3
Yes No No 0
No Yes Yes 0
No Yes No 0
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Research Methodology

Number of students who failed Physics 3 course when
they have failed at least one session (S1, S2, and S3).

Failed S1 Failed S2 Failed S3 Failed Students
Yes Yes Yes 0
Yes Yes No 1
Yes No No 0
No Yes Yes 0
No Yes No 0
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▶ Monte Carlo simulation

▶
∣∣∣ 〉

full probability space of possible student
performance outcomes

▶
∣∣∣ 〉

the small number of observed cases

▶ Normal distribution: (mean and standard deviation)
→ original dataset

▶ Grades were clipped to fall within the [0, 5] scale
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Research Methodology

▶ P(y < 3 | xj < 3)

▶ y is the final course grade
▶ y < 3→ course failure
▶ xj → grade the student obtained in the j th session

(j = 1,2,3)
▶ x ∈ X ⊆ [0,5]3

▶ xj < 3→ session failure
▶ y = 1

3

∑3
j=1 xj

▶ AR(y < 3 | xj < 3) =
∫
X

P(y<3,xj<3)
P(xj<3) dx

▶ AR(y < 3 | xj ≥ 3) =
∫
X

P(y<3,xj≥3)
P(xj≥3) dx

▶ RR(y < 3 | xj < 3) = AR(y<3|xj<3)
AR(y<3|xj≥3)
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Research Methodology

▶ N × 3-dimensional matrix X ∈ [0,5]N×3

▶ Xij ∼ N (µj , σj)

▶ AR(y < 3 | xj < 3) ≈
∑N

i=1 1(yi<3∧Xij<3)∑N
i=1 1(Xij<3)

▶ 1(u) = 1 if the condition u is true, and 0 otherwise

▶ AR(y < 3 | xj ≥ 3) ≈
∑N

i=1 1(yi<3∧Xij≥3)∑N
i=1 1(Xij≥3)

▶ RR(y < 3 | xj < 3) ≈

∑N
i=1 1(yi<3∧Xij<3)∑N

i=1 1(Xij<3)∑N
i=1 1(yi<3∧Xij≥3)∑N

i=1 1(Xij≥3)

▶ This simulation-based approach enables us to
estimate the conditional risks associated with failing
individual sessions and provides a probabilistic
understanding of academic outcomes based on
partial performance.
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estimate the conditional risks associated with failing
individual sessions and provides a probabilistic
understanding of academic outcomes based on
partial performance.
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The Research Results and Discussion
Physics I: µ1 = 3.03, µ2 = 2.98, and µ3 = 3.50; σ1 = 0.43,
σ2 = 0.53, and σ3 = 0.58

Grades of the students enrolled in the physics I course
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The Research Results and Discussion
Physics II: µ1 = 3.17, µ2 = 3.20, and µ3 = 3.55;
σ1 = 0.57, σ2 = 0.27, and σ3 = 0.47

Grades of the students enrolled in the physics II course
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The Research Results and Discussion
Physics III: µ1 = 3.12, µ2 = 3.28, and µ3 = 3.66;
σ1 = 0.41, σ2 = 0.36, and σ3 = 0.31

Grades of the students enrolled in the physics III course
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The Research Results and Discussion
Expected Final Grades by Course Obtained from the
Monte Carlo Simulation Results

Course Expected Standard 95% CI
Grade Error

Physics 1 3.178 1.2× 10−4 [3.178, 3.179]
Physics 2 3.305 10−4 [3.30498, 3.305]
Physics 3 3.354 1.1× 10−4 [3.353, 3.354]

N = 6,553,600
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The Research Results and Discussion

Absolute and Relative Risk by Session and Course

Course Session(s) AR (%) RR (%) 95% CI (RR)
Failed

Phy I S1 41.66 2.77 [2.762, 2.777]
S2 43.52 4.05 [4.032, 4.059]
S1 and S2 62.93 4.18 [4.172, 4.195]

Phy II S1 28.11 12.62 [12.532, 12.703]
S2 22.76 2.49 [2.484, 2.505]
S1 and S2 49.03 22.00 [21.851, 22.159]

Phy III S1 10.61 17.93 [17.601, 18.267]
S2 14.30 8.11 [8.021, 8.196]
S1 and S2 33.05 55.86 [54.827, 56.913]
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The Research Results and Discussion
RR of failing the Physics I course.
RR(y < 3 | x1 < 3) = 2.77, [2.762, 2.777];
RR(y < 3 | x2 < 3) = 4.05, [4.032, 4.059]; and
RR(y < 3 | x3 < 3) = 4.18, [4.172, 4.195].
In all cases, with a 95% confidence interval, the Wald test p-value is
less than 0.05.
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The Research Results and Discussion
RR of failing the Physics II course.
RR(y < 3 | x1 < 3) = 12.62, [12.532, 12.703];
RR(y < 3 | x2 < 3) = 2.49, [2.484, 2.505]; and
RR(y < 3 | x3 < 3) = 22, [21.851, 22.159].
In all cases, with a 95% confidence interval, the Wald test p-value is
less than 0.05.
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The Research Results and Discussion
RR of failing the Physics III course.
RR(y < 3 | x1 < 3) = 17.93, [17.601, 18.267];
RR(y < 3 | x2 < 3) = 8.11, [8.021, 8.196]; and
RR(y < 3 | x3 < 3) = 55.86, [54.827, 56.913].
In all cases, with a 95% confidence interval, the Wald test p-value is
less than 0.05.
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The Research Results and Discussion
Comparison of AR of Course Failure Between Students
Exposed and Unexposed to Failing Previous Sessions,
with Corresponding RD

Crs. Sess.(s) AR (%) AR (%) RD (%) 95% CI (RD)
Failed exposed unexposed

Phy I S1 41.66 15.66 26.62† [26.554, 26.688]
S2 43.52 10.76 32.76† [32.696, 32.823]
S1 and S2 62.93 15.04 47.89† [47.805, 47.975]

Phy II S1 28.11 2.23 25.89† [25.829, 25.944]
S2 22.76 9.12 13.63† [13.563, 13.707]
S1 and S2 49.03 2.23 46.80† [46.673, 46.934]

Phy III S1 10.61 0.59 10.02† [9.961, 10.071]
S2 14.30 1.76 12.54† [12.455, 12.623]
S1 and S2 33.05 0.59 32.45† [32.276, 32.634]

† (p-value < 0.05) 29 / 42
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Conclusions
▶ Monte Carlo simulation→ collected dataset is small

(statistically unstable or undefined)→ absolute and
relative risk causing even high variance

▶ minsyllabus risk of course failure
▶ Physics II and III, failing the first session =⇒ higher

risk of overall course failure← discouragement,
reduced engagement, and diminished resilience in
response to subsequent academic challenges

▶ Imbalance in the difficulty and weight of the course
sessions

▶ Improved student performance is observed from
Physics I to Physics III

▶ Simulation based on the Monte Carlo numerical
method→ Support evidence-based decision-making
in academic planning and policy design
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Perspectives

▶ Collect additional data→ other courses and broaden
the scope of academic risk analysis

▶ Extend the simulation→ specific coursework or
evaluation structure assigned in each session

▶ Adapt the simulation to assume an non-uniform
weighting of sessions→ reduce the risk of failure

▶ Incorporate bootstrap resampling→ variability of
simulation parameters→ robustness (under data
scarcity)
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The end

That’s all folks

Now starts the Q ’n’ A session

Praise the name of God forever and ever, for he has
all wisdom and power. He controls the course of

world events; he removes kings and sets up other
kings. He gives wisdom to the wise and knowledge to

the scholars. He reveals deep and mysterious
things... (Daniel 2:20-22)
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