EPS Escuela Politécnica Superior de Jaén

Aerial Hyperspectral Analysis: DISTINGUISHING OLIVE VARIETIES FOR PRECISION AGRICULTURE

Ruth M. Córdoba Ortega Alba Gómez Liébana M.Isabel Rramos Lidia M. Ortega Juan M.Jurado Grupo de Gráficos y Geomática de Jaén

INDEX

- Objectives 1
- 2 Context
- 3 Materials and equipment
- Study area 4
- 5 Ecology
- Methodology 6
- 7 Results
- 8 Conclusions

Objectives

General goal

Develop a precision agriculture methodology based on hyperspectral analysis for the differentiation of olive varieties.

Optimize agricultural management through accurate variety identification across large areas of land.

Differenciate olive varieties

Drone flight

Automated process

Optimize agricultural management

CONTEXT

Importance of the Study

Accurate identification of olive tree varieties is essential to ensure product quality and to **optimize agricultural management** by adjusting inputs and irrigation practices according to the specific characteristics of each variety.

MANUAL AND RUDIMENTARY PROCESSES

Agricultural technicians rely on manual or imprecise methods to identify olive varieties. MEDIUM-SCALE COVERAGE

Drones provide an intermediate resolution—higher than satellite imagery but lower than laboratory analysis. FRAGMENTED MANAGEMENT

Olive grove management must be tailored to each variety to optimize productivity.

IRRIGATION MANAGEMENT

HERBICIDE APLLICATION

HARVESTING SCHEDULES

HYPERSPECTRAL TECHNOLOGIES

HYPERSPECTRAL IMAGING (HSI) AS A FUNDAMENTAL TECHNOLOGY IN PRECISION AGRICULTURE

This ability to detect subtle differences across the full spectrum is highly valuable for identifying slight variations in the biophysical or biochemical properties.

HYPERSPECTRAL TECHNOLOGIES

HYPERSPECTRAL IMAGING (HSI) AS A FUNDAMENTAL TECHNOLOGY IN PRECISION AGRICULTURE

Hyperspectral Data Acquisition Methods:

- Point Scanning
- Line Scanning
- Snapshot Scanning

6

CONTEXT

LIDAR TECHNOLOGY

NECESSARY FOR THE CORRECTION OF HYPERSPECTRAL DATA

LiDAR is an **active remote sensing** technology that uses laser light pulses to measure distances and generate detailed three-dimensional representations of objects and environments.

Generated products:

- High-precision point clouds
- Digital Elevation Models (DEM)
- Digital Surface Models (DSM)

Materials and equipment

The following sensors are incorporated into a single UAV platform:

- Hiperespectral
- LIDAR
- RGB camera

Phoenix LiDAR scout-Ultra

Nano Hyperspec VNIR

Study area

Instituto de Investigación y Formación Agraria y Pesquera de Andalucía (IFAPA)

Map of the varieties present in the experimental farm:

22-75	22-75	22-75	22-75	38-16	38-16	38-16	38-16	38-20	38-20	38-20	38-20	44-40	44-40	44-40	44-40	39-14	39-14	39-14	39-14	37-69	37-69	37-69	37-69	
39-40	39-40	39-40	39-40	42-22	42-22	42-22	42-22	AR	AR	AR	AR	35-23	35-23	35-23	36-23	42-45	42-45	42-46	42-45	PI	PI	Pi	PI	B-TV
36-43	36-43	36-43	36-43	30-65	30-65	30-65	30-66	22-90	22-90	22-90	22-90	36-41	36-41	36-41	36-41	30-24	30-24	30-24	30-24	33-23	33-23	33-23	33-23	0-11
30-24	30-24	30-24	30-24	36-43	36-43	36-43	36-43	42-46	42-45	42-45	42-45	42-61	42-61	42-61	42-61	36-59	36-59	36-59	36-59	42-48	42-48	42-48	42-48	
38-16	38-16	38-16	38-16	36-23	36-23	35-23	35-23	36-59	36-59	36-59	36-59	42-61	42-61	42-61	42-61	39-40	39-40	39-40	39-40	22-90	22-90	22-90	22-90	
42-48	42-48	42-48	42-48	PI	PI	PI	Pl	22-75	22-75	22-75	22-75	30-66	30-65	30-65	30-66	38-20	38-20	38-20	38-20	AR	AR	AR	AR	B-II
36-41	36-41	36-41	36-41	39-14	39-14	39-14	39-14	42-22	42-22	42-22	42-22	33-23	33-23	33-23	33-23	37-69	37-69	37-69	37-69	44-40	44-40	44-40	44-40	
36-41	36-41	36-41	36-41	22-75	22-75	22-75	22-76	42-22	42-22	42-22	42-22	38-16	38-16	38-16	38-16	30-24	30-24	30-24	30-24	33-23	33-23	33-23	33-23	Ċ.
36-59	36-59	36-59	36-59	22-90	22-90	22-90	22-90	39-40	39-40	39-40	39-40	AR	AR	AR	AR	42-48	42-48	42-48	42-45	42-61	42-61	42-61	42-61	B-II
37-69	37-69	37-69	37-69	36-43	36-43	36-43	36-43	38-20	38-20	38-20	38-20	42-45	42-45	42-45	42-45	35-23	36-23	35-23	35-23	44-40	44-40	44-40	44-40	Ú.
38-41	36-41	36-41	36-41	AR	AR	AR	AR	PI	Pl	PI	PI	30-65	30-65	30-65	30-65	39-14	39-14	39-14	39-14	PI	PI	PI	PI	
42-22	42-22	42-22	42-22	39-14	39-14	39-14	39-14	22-90	22-90	22-90	22-90	36-43	36-43	36-43	36-43	37-69	37-69	37-69	37-69	42-48	42-48	42-48	42-48	
30-65	30-65	30-65	30-65	42-61	42-61	42-61	42-61	30-24	30-24	30-24	30-24	33-23	33-23	33-23	33-23	44-40	44-40	44-40	44-40	42-45	42-45	42-45	42-45	B-I
35-23	35-23	35-23	35-23	36-59	36-69	36-59	36-59	38-20	38-20	38-20	38-20	38-16	38-16	38-16	38-16	22-75	22-75	22-75	22-75	39-40	39-40	39-40	39-40	
Ser Bar	Nov. Na	12137200	1.4.24383	SPAR	TRADET	Z1026	122/222	124223	Chan Cor		影響器	234236	10000	128/85		2012		1	10.36	200226	HUECO	Statt	0	

410000.0 210000.0 510000.0 610000.0 110000.0 310000.0 Menaíh Andalucía Mapa base ESRI Shaded Relief

9

LIDAR DATA PREPROCESSING

LiDAR data preprocessing

Flight path

LIDAR DATA

Hyperspectral image pre-processing

Unfiltered point cloud

LiDAR data preprocessing

Digital Surface Model (DSM)

LIDAR DATA

Hyperspectral image pre-processing

Hyperspectral data preprocessing

LIDAR DATA

Hyperspectral image pre-processing

Digital Surface Model (DSM)

METHODOLOGY Olive tree segmentation

METHODOLOGY Olive tree segmentation

Olive tree segmentation

ID_TREE	AREA (m2)	VARIETY
401	10,024	36-41
402	5,978	36-41
403	4,514	36-41
404	7,274	36-41
405	9,702	AR
406	4,045	AR
407	11,784	AR
408	6,600	AR
409	9,763	PI
410	8,543	PI
411	9,056	PI
412	9,484	PI
413	7,565	30-65
414	6,554	30-65
415	7,447	30-65
416	9,617	30-65
417	9,380	39-14
418	12,412	39-14
419	5,958	39-14
420	10,126	39-14
421	8,187	PI
422	8,433	PI
423	7,857	PI
424	12,282	PI

In this process, in addition to **isolating the geometry** of each olive tree, data such as the area and variety of each tree are also **correlated**.

17

• Filtering according to NIR reflectance

• Filtered by standard deviation

Pixel classification method

To enable the comparison of data from different olive trees and determine whether they exhibit similar behavior, a **range-based classification** system is proposed.

Pixel classification method

To enable the comparison of data from different olive trees and classification system is proposed.

Pixel classification method

In order to compare data from different olive trees and assess whether they exhibit similar behavior, a classification system **based on value ranges is proposed**.

ID_OLIVO	Variedad	Rango	0	10	20	30	40	50	60	70	80	90	100	217
401	36-41	Rango max (Rango 3 a 10.0)	19.23	19.86	18.29	18.92	18.29	18.56	17.70	18.86	17.95	18.66	18.03	3.10
401	36-41	Rango 3 / Rango 2	13.56	9.60	7.93	9.56	8.06	7.90	8.81	8.02	7.46	6.73	7.54	4.44
401	36-41	Rango 2 / Rango 1	16.87	13.31	10.50	10.14	10.46	10.37	10.62	10.96	10.97	11.00	8.87	8.91
401	36-41	Rango 1 / Media	15.55	16.25	16.19	15.32	15.00	13.95	14.28	12.10	12.82	12.42	12.88	14.06
401	36-41	Media / Rango -1	13.05	15.07	16.11	15.14	13.80	16.60	13.73	14.71	13.63	13.28	11.79	16.82
401	36-41	Rango -1 / Rango -2	10.50	12.12	13.34	14.71	15.85	14.02	15.25	15.57	16.85	16.85	17.56	17.41
401	36-41	Rango -2 / Rango -3	6.04	7.65	10.36	10.17	10.90	10.14	10.85	11.29	12.35	13.18	14.39	15.01
401	36-41	Rango min (0.0 a Rango -3)	5.20	6.13	7.29	6.04	7.63	8.46	8.75	8.49	7.98	7.89	8.96	20.27

Pixel classification method

In order to compare data from different olive trees and assess whether they exhibit similar behavior, a classification system **based on value ranges is proposed.**

Clasificación de Rango - Olivo 401, Banda 20

Classification of proportions with ranges

Number of pixels within an olive tree that fall into each defined range.

The proportions of pixels per spectral band for each created range are represented in column format.

The sum of all ranges per band represents 100% of the proportion.

Classification of proportions with ranges

Within each group of the same variety, the graphs exhibit similar trends and behaviors in their spectral distribution.

Classification of proportions with ranges

Within each group of the same variety, the graphs exhibit similar trends and behaviors in their spectral distribution.

Classification of proportions with ranges

Heatmap of **Euclidean distances** between olive trees.

- Extract statistical characteristics (mean, deviation, etc.) from each olive tree.
- Train a classifier (Random Forest) to distinguish varieties.
- Calculate the distance between olive trees based on these characteristics.

401 (36-41) - <mark>0.(</mark>) 4	4.7	5.9	8.8	8.9	9.5	10.5	8.8	8.7	8.3	8.6	8.7	8.7	9.0	11.3	8.6	10.2	9.5	8.8	9.4	8.7	8.5	8.6	8.0
402 (36-41) - <mark>4.</mark>	7 (0.0	1.8	6.2	7.8	8.5	9.6	7.7	7.6	7.1	7.5	7.6	7.7	8.0	10.5	7.5	9.3	8.5	7.7	8.4	7.6	7.4	7.5	6.8
403 (36-41) - 5.9) :	1.8	0.0	4.7	8.0	8.7	9.7	7.9	7.7	7.3	7.7	7.8	7.8	8.1	10.6	7.6	9.4	8.7	7.9	8.6	7.8	7.6	7.7	7.0
404 (36-41) - 8.8	3 6	ō.2	4.7	0.0	9.0	9.6	10.5	8.9	8.7	8.4	8.7	8.8	8.8	9.1	11.4	8.7	10.2	9.6	8.9	9.5	8.8	8.6	8.7	8.1
405 (AR) - 8.9	9 7	7.8	8.0	9.0	0.0	4.8	7.1	2.3	7.5	7.1	7.5	7.6	7.6	8.0	10.5	7.4	9.3	8.5	7.7	8.4	7.6	7.4	7.5	6.8
406 (AR) - 9.5	5 8	3.5	8.7	9.6	4.8	0.0	6.0	5.7	8.3	7.9	8.2	8.3	8.4	8.7	11.0	8.2	9.9	9.2	8.4	9.1	8.3	8.1	8.3	7.6
407 (AR) - <mark>10</mark> .	5 9	9.6	9.7	10.5	7.1	6.0	0.0	8.4	9.3	9.0	9.3	9.4	9.4	9.7	11.8	9.3	10.8	10.2	9.5	10.1	9.4	9.2	9.3	8.7
408 (AR) - 8.8	3 7	7.7	7.9	8.9	2.3	5.7	8.4	0.0	7.4	6.9	7.3	7.5	7.5	7.8	10.4	7.3	9.1	8.4	7.6	8.3	7.5	7.2	7.4	6.6
409 (PI) - <mark>8.</mark> 7	7	7.6	7.7	8.7	7.5	8.3	9.3	7.4	0.0	1.5	1.6	2.0	7.4	7.7	10.3	7.2	9.0	8.3	7.4	8.2	5.8	5.0	6.2	2.6
410 (PI) - <mark>8.</mark> 3	3 7	7.1	7.3	8.4	7.1	7.9	9.0	6.9	1.5	0.0	1.4	1.4	6.9	7.3	10.0	6.7	8.7	7.9	7.0	7.8	4.5	3.7	5.0	1.3
411 (PI) - 8.0	5 7	7.5	7.7	8.7	7.5	8.2	9.3	7.3	1.6	1.4	0.0	0.7	7.3	7.6	10.2	7.1	9.0	8.2	7.4	8.1	5.5	4.5	6.0	2.0
412 (PI) - <mark>8.</mark> 7	7 7	7.6	7.8	8.8	7.6	8.3	9.4	7.5	2.0	1.4	0.7	0.0	7.4	7.8	10.3	7.2	9.1	8.4	7.5	8.2	5.1	4.1	5.7	1.9
413 (30-65) - <mark>8.</mark> 7	7 7	7.7	7.8	8.8	7.6	8.4	9.4	7.5	7.4	6.9	7.3	7.4	0.0	3.8	4.7	2.0	9.1	8.4	7.6	8.3	7.4	7.2	7.3	6.6
414 (30-65) - 9.0) 8	3.0	8.1	9.1	8.0	8.7	9.7	7.8	7.7	7.3	7.6	7.8	3.8	0.0	7.9	4.5	9.4	8.7	7.9	8.6	7.8	7.5	7.7	6.9
415 (30-65) - <mark>11</mark> .	3 1	0.5	10.6	11.4	10.5	11.0	11.8	10.4	10.3	10.0	10.2	10.3	4.7	7.9	0.0	5.8	11.6	11.0	10.4	11.0	10.3	10.2	10.3	9.7
416 (30-65) - 8.0	5 7	7.5	7.6	8.7	7.4	8.2	9.3	7.3	7.2	6.7	7.1	7.2	2.0	4.5	5.8	0.0	8.9	8.2	7.4	8.1	7.2	7.0	7.1	6.3
417 (39-14) - <mark>10</mark> .	2 9	9.3	9.4	10.2	9.3	9.9	10.8	9.1	9.0	8.7	9.0	9.1	9.1	9.4	11.6	8.9	0.0	3.2	6.2	6.1	9.1	8.9	9.0	8.4
418 (39-14) - <mark>9.</mark> 9	5 8	3.5	8.7	9.6	8.5	9.2	10.2	8.4	8.3	7.9	8.2	8.4	8.4	8.7	11.0	8.2	3.2	0.0	3.9	3.2	8.3	8.1	8.3	7.6
419 (39-14) - <mark>8.</mark> 8	3 7	7.7	7.9	8.9	7.7	8.4	9.5	7.6	7.4	7.0	7.4	7.5	7.6	7.9	10.4	7.4	6.2	3.9	0.0	1.7	7.5	7.3	7.4	6.7
420 (39-14) - <mark>9.</mark> 4	ξ	3.4	8.6	9.5	8.4	9.1	10.1	8.3	8.2	7.8	8.1	8.2	8.3	8.6	11.0	8.1	6.1	3.2	1.7	0.0	8.2	8.0	8.2	7.5
421 (PI) - 8.7	7 7	7.6	7.8	8.8	7.6	8.3	9.4	7.5	5.8	4.5	5.5	5.1	7.4	7.8	10.3	7.2	9.1	8.3	7.5	8.2	0.0	0.9	0.9	3.6
422 (PI) - <mark>8.</mark> 5	5 7	7.4	7.6	8.6	7.4	8.1	9.2	7.2	5.0	3.7	4.5	4.1	7.2	7.5	10.2	7.0	8.9	8.1	7.3	8.0	0.9	0.0	1.7	2.7
423 (PI) - <mark>8.</mark> 0	5 7	7.5	7.7	8.7	7.5	8.3	9.3	7.4	6.2	5.0	6.0	5.7	7.3	7.7	10.3	7.1	9.0	8.3	7.4	8.2	0.9	1.7	0.0	4.0
424 (PI) - <mark>8.</mark> 0) (5.8	7.0	8.1	6.8	7.6	8.7	6.6	2.6	1.3	2.0	1.9	6.6	6.9	9.7	6.3	8.4	7.6	6.7	7.5	3.6	2.7	4.0	0.0
26-41	6.47	26.0	N	AN LU	R S	AR JU	22 0	R 8	81,0	81/1	81/21	81,00	ري روز کې	ري روني ا	6) 0.	، بې م	A	A .	A	12 2	81/2	8 ¹⁾ 3	BU A	81)
ROT ROJ	80°	2	0 ^A ()	A0.	AOC	^{\$0} ,	A00	80	A.2	a'	a'r	130	14 1	150	1000	J10,	18 1	19 1	20(3)	Q.L	a.	a.	Q.L	

- 10

- 8

- 4

- 6

- 2

Classification of proportions with ranges

																					_				
	401 (36-41) -	0.0	4.7	5.9	8.8	8.9	9.5	10.5	8.8	8.7	8.3	8.6	8.7	8.7	9.0	11.3	8.6	10.2	9.5	8.8	9.4	8.7	8.5	8.6	8.0
	402 (36-41) -	4.7	0.0	1.8	6.2	7.8	8.5	9.6	7.7	7.6	7.1	7.5	7.6	7.7	8.0	10.5	7.5	9.3	8.5	7.7	8.4	7.6	7.4	7.5	6.8
	403 (36-41) -	5.9	1.8	0.0	4.7	8.0	8.7	9.7	7.9	7.7	7.3	7.7	7.8	7.8	8.1	10.6	7.6	9.4	8.7	7.9	8.6	7.8	7.6	7.7	7.0
	404 (36-41) -	8.8	6.2	4.7	0.0	9.0	9.6	10.5	8.9	8.7	8.4	8.7	8.8	8.8	9.1	11.4	8.7	10.2	9.6	8.9	9.5	8.8	8.6	8.7	8.1
	405 (AR) -	8.9	7.8	8.0	9.0	0.0	4.8	7.1	2.3	7.5	7.1	7.5	7.6	7.6	8.0	10.5	7.4	9.3	8.5	7.7	8.4	7.6	7.4	7.5	6.8
	406 (AR) -	9.5	8.5	8.7	9.6	4.8	0.0	6.0	5.7	8.3	7.9	8.2	8.3	8.4	8.7	11.0	8.2	9.9	9.2	8.4	9.1	8.3	8.1	8.3	7.6
	407 (AR) -	10.5	9.6	9.7	10.5	7.1	6.0	0.0	8.4	9.3	9.0	9.3	9.4	9.4	9.7	11.8	9.3	10.8	10.2	9.5	10.1	9.4	9.2	9.3	8.7
	408 (AR) -	8.8	7.7	7.9	8.9	2.3	5.7	8.4	0.0	7.4	6.9	7.3	7.5	7.5	7.8	10.4	7.3	9.1	8.4	7.6	8.3	7.5	7.2	7.4	6.6
	409 (PI) -	8.7	7.6	7.7	8.7	7.5	8.3	9.3	7.4	0.0	1.5	1.6	2.0	7.4	7.7	10.3	7.2	9.0	8.3	7.4	8.2	5.8	5.0	6.2	2.6
	410 (PI) -	8.3	7.1	7.3	8.4	7.1	7.9	9.0	6.9	1.5	0.0	1.4	1.4	6.9	7.3	10.0	6.7	8.7	7.9	7.0	7.8	4.5	3.7	5.0	1.3
	411 (PI) -	8.6	7.5	7.7	8.7	7.5	8.2	9.3	7.3	1.6	1.4	0.0	0.7	7.3	7.6	10.2	7.1	9.0	8.2	7.4	8.1	5.5	4.5	6.0	2.0
	412 (PI) -	8.7	7.6	7.8	8.8	7.6	8.3	9.4	7.5	2.0	1.4	0.7	0.0	7.4	7.8	10.3	7.2	9.1	8.4	7.5	8.2	5.1	4.1	5.7	1.9
-	413 (30-65) -	8.7	7.7	7.8	8.8	7.6	8.4	9.4	7.5	7.4	6.9	7.3	7.4	0.0	3.8	4.7	2.0	9.1	8.4	7.6	8.3	7.4	7.2	7.3	6.6
	414 (30-65) -	9.0	8.0	8.1	9.1	8.0	8.7	9.7	7.8	7.7	7.3	7.6	7.8	3.8	0.0	7.9	4.5	9.4	8.7	7.9	8.6	7.8	7.5	7.7	6.9
1	415 (30-65) -	11.3	10.5	10.6	11.4	10.5	11.0	11.8	10.4	10.3	10.0	10.2	10.3	4.7	7.9	0.0	5.8	11.6	11.0	10.4	11.0	10.3	10.2	10.3	9.7
L	416 (30-65) -	8.6	7.5	7.6	8.7	7.4	8.2	9.3	7.3	7.2	6.7	7.1	7.2	2.0	4.5	5.8	0.0	8.9	8.2	7.4	8.1	7.2	7.0	7.1	6.3
Т	417 (39-14) -	10.2	9.3	9.4	10.2	9.3	9.9	10.8	9.1	9.0	8.7	9.0	9.1	9.1	9.4	11.6	8.9	0.0	3.2	6.2	6.1	9.1	8.9	9.0	8.4
	418 (39-14) -	9.5	8.5	8.7	9.6	8.5	9.2	10.2	8.4	8.3	7.9	8.2	8.4	8.4	8.7	11.0	8.2	3.2	0.0	3.9	3.2	8.3	8.1	8.3	7.6
	419 (39-14) -	8.8	7.7	7.9	8.9	7.7	8.4	9.5	7.6	7.4	7.0	7.4	7.5	7.6	7.9	10.4	7.4	6.2	3.9	0.0	1.7	7.5	7.3	7.4	6.7
	420 (39-14) -	9.4	8.4	8.6	9.5	8.4	9.1	10.1	8.3	8.2	7.8	8.1	8.2	8.3	8.6	11.0	8.1	6.1	3.2	1.7	0.0	8.2	8.0	8.2	7.5
	421 (PI) -	8.7	7.6	7.8	8.8	7.6	8.3	9.4	7.5	5.8	4.5	5.5	5.1	7.4	7.8	10.3	7.2	9.1	8.3	7.5	8.2	0.0	0.9	0.9	3.6
	422 (PI) -	8.5	7.4	7.6	8.6	7.4	8.1	9.2	7.2	5.0	3.7	4.5	4.1	7.2	7.5	10.2	7.0	8.9	8.1	7.3	8.0	0.9	0.0	1.7	2.7
•	423 (PI) -	8.6	7.5	7.7	8.7	7.5	8.3	9.3	7.4	6.2	5.0	6.0	5.7	7.3	7.7	10.3	7.1	9.0	8.3	7.4	8.2	0.9	1.7	0.0	4.0
	424 (PI) -	8.0	6.8	7.0	8.1	6.8	7.6	8.7	6.6	2.6	1.3	2.0	1.9	6.6	6.9	9.7	6.3	8.4	7.6	6.7	7.5	3.6	2.7	4.0	0.0
	401 402 403 404 136 41 36 41 405 406 401 408 408 40								- Soo	- 10	PIL ATT	PN 412	. tr	10 30 A	15 30'	10 30.	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	- 10° -	12 10 10 10 10 10 10 10 10 10 10 10 10 10	- 12 12 12 12 12 12 12 12 12 12 12 12 12	4 22	en 22	291 - 11 A231	21 224	, L

- 8 - 6

- 10

- 0

- 2

CONCLUSIONS

HSI TECHNOLOGY IN PRECISION AGRICULTURE

• Allows the detection of subtle differences in crops and olive varieties classification.

USE OF UAV PLATFORMS AND PROCESS AUTOMATION

- UAVs with hyperspectral cameras optimize resources and improve the accuracy of agricultural monitoring.
- By capturing all the information at once, it is possible to automate much of the process, eliminating fieldwork.

POTENTIAL OF ARTIFICIAL INTELLIGENCE AND FUTURE CHALLENGES

• It is possible to improve accuracy through advanced techniques such as **Deep** Learning.

THANK YOU

