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Introduction

Explainability in Object Handover Tasks aims to enhance user understanding and trust in
robot actions.

e Autonomous robot behavior is often difficult to explain due to dynamic and uncertain
environments.

e Diverse user knowledge and expectations make it challenging to maintain the appropriate
level of explanation detail.

e Emphasizes the importance of bridging the knowledge gap between humans and robots
to enable effective collaboration in HRI.

User Study: Evaluating the effectiveness of multiple levels of explainability in item handover
tasks.
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Basic Setup

e A 3D bounding box is used to detect people within the robot’s environment.
e Distinguishes three human positions: standing, sitting, and lying down.

e Notations: B = bounding box, W = robot base frame, W,, = robot end-effector, p =
relative point between end-effector and bounding box.

Spatial Predicates

in_front_ofy.y (p,B)
far_in_front_ofs  (0,B)
behind, (p,B)
far_behind, (p,B)
above, , (p,B)

below, ,, (p,B)
centered, , (p,B)
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Natural Language Explanation
Success precondition & its translation for each position

Position Logical Predicates Natural Language Translation

Standing centeredy, . (p,B) N in_front_of. (p,B "The robot’s arm should be in front of and cen-
- centeredy (p,B) A — belowg,y (p,B ) — | tered around a person (corresponding to the
behindz y (p,B) A — far_behindz y (p,B) A | person’s height and width). It should not be be-
- aboveg,y (0,B) A —in_front_ofy (p,B) A — | hind, above, beneath, or to the right/left of a hu-
far_in_front_ofy (p,B) man."

Sitting centeredy, . (p,B) N in_front_of. (p,B) A | "The robot’s arm is positioned in front of and
- centeredy; (p,B) A — belows,y (p,B) A — | around the middle of a sitting person (accord-
behindz y (p,B) A = far_behind. y (p,B) A | ing to the person’s height and width). It is not
- abovez,y (p,B) A —in_front_ofy, (p,B) A — | behind, above, beneath, and to the right or left
far_in_front_ofz y (p,B) of the person.”

Lying Down | abovey,y (p,B) A centeredy, (p,B) N — | "The robot’s arm is positioned above and cen-
centered, (p,B) N — belowsy (p,B) A | tered around the person’s width. It is not below
- behindzy (p.B) A — far_behind, | or around their head or feet. It should not ex-
(p,B) A - in_front_ofy, (pB) A - | tendallthe way to the opposite side from where
far_in_front_ofs y (p,B) a robot is standing next to."
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BLEU Score Evaluation

We automatically generated translations using ChatGPT 3.5 and evaluated their quality
using the Bilingual Evaluation Understudy (BLEU) metric, where scores range from 0 to 1.

BLEU measures the similarity between a machine-generated translation (candidate) and a
human reference translation. Shorter candidate sentences are penalized through the Brevity
Penalty component of the metric.

Table 1: BLEU scores for ChatGPT 3.5-generated translations by position

No. Position BLEU Score

1 Standing 0.85
2 Sitting 0.81
3 Lying Down 0.88
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Neural Network Interpretation
Proposed Approach: Neural Network & Grad-CAM

e Automatic generation of handover positions using a neural network model.
e Post-hoc visual explanation through Grad-CAM heatmaps to highlight decision regions.

Implementation Note: A simulated heatmap was used due to a temporary technical issue with
the robot.

Figure 1: Left: Original handover scenario. ~ Right: Simulated Grad-CAM heatmap visualization.
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Experimental Design

e Three explanation methods evaluated: no explanation, partial explanation, and detailed
explanation.

o Explanations integrated into a previously collected dataset’.

e Two hypotheses formulated to guide the study.

Hypothesis 1

Users prefer to use robotic systems that have explanations over those without.

Hypothesis 2

Natural language explanations are preferred by users over alternate visualization methods like
heatmap.

'https://codalab.lisn.upsaclay.fr/competitions/6757#1learn_the_details-dataset
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Experimental Setting

e Online questionnaire conducted for broad participant reach and real-time data collection.
e Video 1 (no explanation) and Video 2 (with explanation) were identical in content.
e Participants were shown 8 out of 10 videos in random order to minimize potential bias.

e Participants rated their confidence in understanding the robot’s decision-making process
(5 = very confident, 1 = not confident at all).

e Preference question: “Which type of video do you prefer when seeking information?”
Response options: video with explanation, without explanation, or depends on the
context. (Used for Hypothesis 1)

e Video 4 (heatmap) and Video 8 (natural language) were identical and used for
Hypothesis 2 testing.
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Results

e 33 participants aged between 18 and over 40 years.

e Educational background ranged from high school to PhD levels, representing diverse
academic and professional fields.

e Most participants had prior hands-on experience with robotic systems (75.8%) and
were familiar with Al/ML concepts (84.8%).

e Over two-thirds reported feeling uneasy with Al systems lacking explanations.

o After viewing Video 1 (no explanation), most participants expressed uncertainty,
whereas Video 2 (with explanation) led to a noticeable increase in confidence levels.
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o

Overview of Participants’ Confidence Levels

in relation to scenario-based questions (Videos 3—10)
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Hypotheses Testing

Hypothesis 1 — Chi-square Test Hypothesis 2 — One-sample Proportion Test

e Hj: No preference difference among e Hjy: No preference difference.

explanation types. e H;: Preference exists for natural

e H;: Preference exists for videos with language explanations.
explanations. Test result: Z = 2.46; with o = 0.05, critical
Test result: x? = 28.1, df = 2, p-value = range = [-1.96, 1.96].
0.0000008 < o = 0.05 Since Z > 1.96, Reject H (significant
= Reject Hy (significant difference found). preference found).

Post-hoc Power Analysis

H1: Large effect (w = 0.70), power = 0.98 (robust)
H2: Medium effect (h = 0.40), power = 0.37 (limited sensitivity)
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Conclusions

e Providing explanations enhances users’ trust and understanding of robot actions.

e Heatmaps provide a medium level of explainability, suitable for simple or
straightforward robot tasks.

o Natural language explanations offer high-level interpretability for more complex robot
behaviors.

e Findings highlight the importance of adaptive communication strategies for effective
Human—Robot Interaction (HRI).

Lessons Learned

e Potential response bias in Hypothesis 1 — the question wording may have influenced
participants toward explanations.

e The outcome of Hypothesis 2 may reflect asymmetry in explanation format —
heatmaps require greater cognitive interpretation than text.
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Future Work

e Explore automated generation of natural language explanations for dynamic,
context-aware communication.

e Incorporate interactive explainability features that enable user engagement, such as:

— Combination of natural language and heatmaps for multi-modal feedback.
— Audio or speech-based explanation delivery for accessibility and realism.

e Apply machine learning techniques to personalize explanation types based on
individual user profiles.
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