

Explainability Analysis for Skill Execution

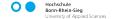
Khatina Sari, Prof. Dr. Paul G. Plöger, Dr. Alex Mitrevski

Barcelona, Spain, October 30, 2025

Presenter

Khatina Sari

Department of Computer Science


Email: khatina.sari@smail.inf.h-brs.de

Khatina Sari

Master of Autonomous Systems (M.Sc.), H-BRS Fullstack Developer at GiPsy Software Solutions

Research Interests: Explainable AI, Human-Robot Interaction, Deep Learning. Publications & Projects

- Assessing the Robustness of Learning-Based Robot Skill Models, 2025
- Developing Facial Recognition with CNN and Liveness Detector for Attendance App, 2022
- Developing Chatbot for PT. Everbright Jambi, 2021
- Analyzing Local E-government Success Using DeLone and McLean Information System Success Model, 2019

Introduction

Explainability in Object Handover Tasks aims to enhance user understanding and trust in robot actions.

- Autonomous robot behavior is often difficult to explain due to dynamic and uncertain environments.
- Diverse user knowledge and expectations make it challenging to maintain the appropriate level of explanation detail.
- Emphasizes the importance of bridging the knowledge gap between humans and robots to enable effective collaboration in HRI.

User Study: Evaluating the effectiveness of multiple levels of explainability in item handover tasks.

Basic Setup

- A 3D bounding box is used to detect people within the robot's environment.
- Distinguishes three **human positions**: standing, sitting, and lying down.
- **Notations:** $B = \text{bounding box}, W = \text{robot base frame}, W_p = \text{robot end-effector}, p =$ relative point between end-effector and bounding box.

Spatial Predicates

 $in_front_of_{x,y}$ (p,B) $far in front of_{x,y}(p,B)$ $behind_x$ (p,B) $far\ behind_{x}$ (p,B) $above_{x,y}$ (p,B) $below_{x,y}$ (p,B) $centered_{x,y}$ (p,B)

Natural Language Explanation

Success precondition & its translation for each position

Position	Logical Predicates	Natural Language Translation
Standing	$centered_{y,z}$ (p,B) \land $in_front_of_x$ (p,B) \land	"The robot's arm should be in front of and cen-
	$\neg centered_x (p,B) \land \neg below_{x,y} (p,B) \land \neg$	tered around a person (corresponding to the
	$behind_{x,y}$ (p,B) $\land \neg far_behind_{x,y}$ (p,B) \land	person's height and width). It should not be be-
	$\neg \ above_{x,y} \ (\textit{p,B}) \land \neg \ in_front_of_y \ (\textit{p,B}) \land \neg$	hind, above, beneath, or to the right/left of a hu-
	$far_in_front_of_y$ (p,B)	man."
Sitting	$centered_{y,z}$ (p,B) \land $in_front_of_x$ (p,B) \land	"The robot's arm is positioned in front of and
	$\neg centered_x (p,B) \land \neg below_{x,y} (p,B) \land \neg$	around the middle of a sitting person (accord-
	$behind_{x,y}$ (p,B) $\land \neg far_behind_{x,y}$ (p,B) \land	ing to the person's height and width). It is not
	$\neg \ above_{x,y} \ (p,\!B) \land \neg \ in_front_of_y \ (p,\!B) \land \neg$	behind, above, beneath, and to the right or left
	$far_in_front_of_{x,y}$ (p,B)	of the person."
Lying Down	$above_{x,y}$ (p,B) \land $centered_y$ (p,B) \land \neg	"The robot's arm is positioned above and cen-
	$centered_z$ (p,B) $\land \neg below_{x,y}$ (p,B) \land	tered around the person's width. It is not below
	$\neg behind_{x,y}$ (p,B) $\land \neg far_behind_{x,y}$	or around their head or feet. It should not ex-
	$(p,B) \land \neg in_front_of_y (p,B) \land \neg$	tend all the way to the opposite side from where
	$far_in_front_of_{x,y}$ (p,B)	a robot is standing next to."

BLEU Score Evaluation

We automatically generated translations using ChatGPT 3.5 and evaluated their quality using the Bilingual Evaluation Understudy (BLEU) metric, where scores range from 0 to 1.

BLEU measures the similarity between a machine-generated translation (candidate) and a human reference translation. Shorter candidate sentences are penalized through the **Brevity Penalty** component of the metric.

Table 1: BLEU scores for ChatGPT 3.5-generated translations by position

No.	Position	BLEU Score
1	Standing	0.85
2	Sitting	0.81
3	Lying Down	0.88

Neural Network Interpretation

Proposed Approach: Neural Network & Grad-CAM

- Automatic generation of handover positions using a neural network model.
- Post-hoc visual explanation through Grad-CAM heatmaps to highlight decision regions.

Implementation Note: A simulated heatmap was used due to a temporary technical issue with the robot.

Figure 1: Left: Original handover scenario.

Right: Simulated Grad-CAM heatmap visualization.

Experimental Design

- Three explanation methods evaluated: no explanation, partial explanation, and detailed explanation.
- Explanations integrated into a previously collected dataset¹.
- Two hypotheses formulated to guide the study.

Hypothesis 1

Users prefer to use robotic systems that have explanations over those without.

Hypothesis 2

Natural language explanations are preferred by users over alternate visualization methods like heatmap.

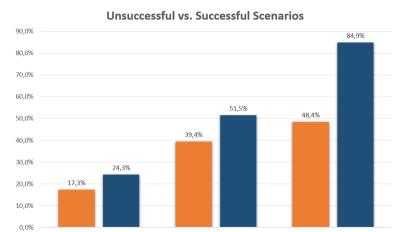
https://codalab.lisn.upsaclay.fr/competitions/6757#learn_the_details-dataset

Experimental Setting

- Online questionnaire conducted for broad participant reach and real-time data collection.
- Video 1 (no explanation) and Video 2 (with explanation) were identical in content.
- Participants were shown 8 out of 10 videos in random order to minimize potential bias.
- Participants rated their confidence in understanding the robot's decision-making process
 (5 = very confident, 1 = not confident at all).
- Preference question: "Which type of video do you prefer when seeking information?"
 Response options: video with explanation, without explanation, or depends on the
 context. (Used for Hypothesis 1)
- Video 4 (heatmap) and Video 8 (natural language) were identical and used for Hypothesis 2 testing.

Results

- 33 participants aged between 18 and over 40 years.
- Educational background ranged from high school to PhD levels, representing diverse academic and professional fields.
- Most participants had prior hands-on experience with robotic systems (75.8%) and were familiar with Al/ML concepts (84.8%).
- Over two-thirds reported feeling uneasy with Al systems lacking explanations.
- After viewing Video 1 (no explanation), most participants expressed uncertainty, whereas Video 2 (with explanation) led to a noticeable increase in confidence levels.



Overview of Participants' Confidence Levels

in relation to scenario-based questions (Videos 3–10)

Heatmap

■ Unsuccessful ■ Successful

No Explanation

Natural Language

Hypotheses Testing

Hypothesis 1 – Chi-square Test

- H₀: No preference difference among explanation types.
- H₁: Preference exists for videos with explanations.

Test result: $\chi^2=28.1, df=2, p$ -value = 0.0000008 < $\alpha=0.05$ \Rightarrow Reject H_0 (significant difference found).

Hypothesis 2 – One-sample Proportion Test

- *H*₀: No preference difference.
- H₁: Preference exists for natural language explanations.

Test result: Z=2.46; with $\alpha=0.05$, critical range = [-1.96, 1.96]. Since Z>1.96, Reject H_0 (significant preference found).

Post-hoc Power Analysis

H1: Large effect (w = 0.70), power = 0.98 (robust)

H2: Medium effect (h = 0.40), power = 0.37 (limited sensitivity)

Conclusions

- Providing explanations enhances users' trust and understanding of robot actions.
- Heatmaps provide a medium level of explainability, suitable for simple or straightforward robot tasks.
- Natural language explanations offer high-level interpretability for more complex robot behaviors.
- Findings highlight the importance of adaptive communication strategies for effective Human–Robot Interaction (HRI).

Lessons Learned

- Potential response bias in Hypothesis 1 the question wording may have influenced participants toward explanations.
- The outcome of Hypothesis 2 may reflect asymmetry in explanation format heatmaps require greater cognitive interpretation than text.

Future Work

- Explore automated generation of natural language explanations for dynamic, context-aware communication.
- Incorporate interactive explainability features that enable user engagement, such as:
 - Combination of natural language and heatmaps for multi-modal feedback.
 - Audio or speech-based explanation delivery for accessibility and realism.
- Apply machine learning techniques to personalize explanation types based on individual user profiles.

