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Meet the team

PhD in Physics
Bio-optics and photonics

Our Mosaic:

PhD in computer science
Al Engineers

R&D project management

Post-docs
Microscopic Heat Engine
Light-Sheet Microscopy

Happy place
Sci-Fi and Fantasy books
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Industrial

Advanced remote management system for operational efficiency in water

L)
DAMIS distribution networks through intelligent systems ClOSEf Surers
Clinically supported stroke scenario recognition, visualization, @s
PREV-ICTS inference and simulation platform

Automated technical detection and labeling in industrial engine
DETECT technical diagrams using computer vision @
New advanced QA testing platform using autonomous Al and full
SMARTQAM coverage profile
RIVER EU New Al for a more resilient and sustainable steel supply chain
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Alteration of blood supply to the brain
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l Introduction

Alteration of blood supply to the brain

STROKE

Ischemic Haemorrhagic

~87% of all strokes ‘ @ ~10-15% of all strokes

BLOCKAGE RUPTURE

nucleus

MakeAGIF.com
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l Introduction

As per World Stroke Organisation,
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v’ 2nd Jeading cause of death new strokes
v $890 billion annually
v $1 trillion by 2030
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l Introduction

As per World Stroke Organisation,

v’ 2nd Jeading cause of death
v $890 billion annually
v $1 trillion by 2030

Estimated
35%
increase in
10 years

1in 5 have

recurrent
stroke I

\/

101M

people

are living with
the stroke
aftermath
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Our goal is to understand,

1. What contributes to stroke possibility?

2. Can we derive prevention strategies?
 Influence of specific biomarkers

Deep

High

Accuracy

Learning

Bayesian Models

SVM

Decision Trees

Rule-based Models

Low
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Our goal is to understand,

1. What contributes to stroke possibility?
« (Causal Al - not just correlations!

2. Can we derive prevention strategies?
 Influence of specific biomarkers

* Rule based learning model - Tsetlin
Machine

If Aand not B, then class X

High

Accuracy
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The ladder of causation

“What if | had done...?

Association Doing/Intervening Why?"
“What if I do...?” Y

“"Howcan |...?

“What if | see...?”

Image by Esra Simsek (based on Pearl's Ladder of Causation)
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Introduction Approach

The ladder of causation Tsetlin Machine

Output decider

[ Vote Collector - Class 1 ‘ [ Vote Collector — Class 0 J
Counterfactuals k\_ h
:’Q;I _—y
.v_ ad
¥ 4

“What if | had done...?

Association Doing/Intervening Why?"
“What if I do...?” Y

“"Howcan |...?

“What if | see...?”

Image by Esra Simsek (based on Pearl's Ladder of Causation) Image from 10.48550/arXiv.2005.05131 by Ole-Christoffer Granmo
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http://dx.doi.org/10.48550/arXiv.2005.05131
http://dx.doi.org/10.48550/arXiv.2005.05131
http://dx.doi.org/10.48550/arXiv.2005.05131
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Causal discovery,

1. Shows effects of each feature on others

2. Directional - identifying cause and effect

3. How to identify the most influential ones?
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Step 1

Ranking of features, €

1. Degree Centrality: AG
Number of direct connections
Higher value = broad influence

2. Betweenness Centrality: AG
A node’s link to others T
Higher value - critical link

3. Compare with domain knowledge! ¢
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Results
. . AG 1
Rules/clauses of Tsetlin Machine, .
ED = 56.0
1. Binarization with bins for continuous variables oL
R_A >233
2. Voting weights for each generated clause = ‘
TF 1
mRS_0 >2.67

3. Helps identify,
Most important features for a class
Their value ranges

Haemorrhagic Ischemic
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Results

RN

Results

AG 1

Rules/clauses of Tsetlin Machine,

BNP >1123.77 550.01 to 1123.77

ED =56.0
LDL 7167 to 117.67
The clause for ischemic stroke would then be: RA T
if mRS 0> 2.67 and SEX 1
LDL between 71 — 117 mg/dL and TF )
Age NOT > 56 and . e
BNP NOT between 550 — 1123 pg/mL ) N _—

then Ischemic.

Preliminary results™ - subject to further investigation
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l Introduction | Approach | Results Results | What's next?

v" Remove bias in class distribution
v More robust model training More data

v' More scenarios to run
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Results | What's next?

v" Remove bias in class distribution
v More robust model training More data
v More scenarios to run

v Check for ‘hidden’ confounders
Improve v Advanced algorithms for causal discovery
causal ; : . :
inference v Ensure the direction of causality with

domain knowledge
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l Introduction | Approach | Results | Results | What's next?

v" Remove bias in class distribution
v More robust model training More data
v More scenarios to run

v Check for ‘hidden’ confounders
Improve v Advanced algorithms for causal discovery
causal ; : . :
inference v Ensure the direction of causality with

domain knowledge

v Improve binarization with

domain knowledge SR e
v' Resampling of data TM clauses
v Clause weight distribution
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Results

l Introduction | Approach | Results | | What's next? l Conclusion

cat [whiskers pa

O horse

Explainable Al model

classifying image as "cat"

MEDICAL DATA
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Results Results
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A product for
medical
professionals to
help run what if
scenarios...

What's next? l Conclusion

cat [whiskers,fur,pa

O horse

Explainable Al model
classifying image as "cat"

MEDICAL DATA
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Results

l Introduction | Approach | Results | | What's next? l Conclusion

CAT in the box:
Causal Al — Tsetlin machine duo
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Thank you!
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Portugal

+34 931 411 982

capitole-consulting.com
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Jalpa Soni
Senior Data scientist, Al Innovation Lab

jalpabensoni@capitole-consulting.com
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