

CAT in the box:

A CausalAI – Tsetlin Machine Duo

Enabling explainable Stroke Diagnosis and Prevention

Jalpa Soni, Emelian Gurei, Jaime Lopez Sahuquillo, Sergio García Gomez, Manuel Rodriguez Yañez, Francisco Campos Perez, Victor M. Saenger

Presenter

Jalpa Soni Innovation Lab Capitole jalpabensoni@capitole-consulting.com

Meet the team

Bio-optics and photonics

Post-docs

Microscopic Heat Engine Light-Sheet Microscopy

Happy place

Sci-Fi and Fantasy books

Our Mosaic:

PhD in computer science Al Engineers R&D project management

Our Projects

DAMIS

Advanced remote management system for operational efficiency in water distribution networks through intelligent systems

PREV-ICTS

Clinically supported stroke scenario recognition, visualization, inference and simulation platform

DETECT

Automated technical detection and labeling in industrial engine technical diagrams using computer vision

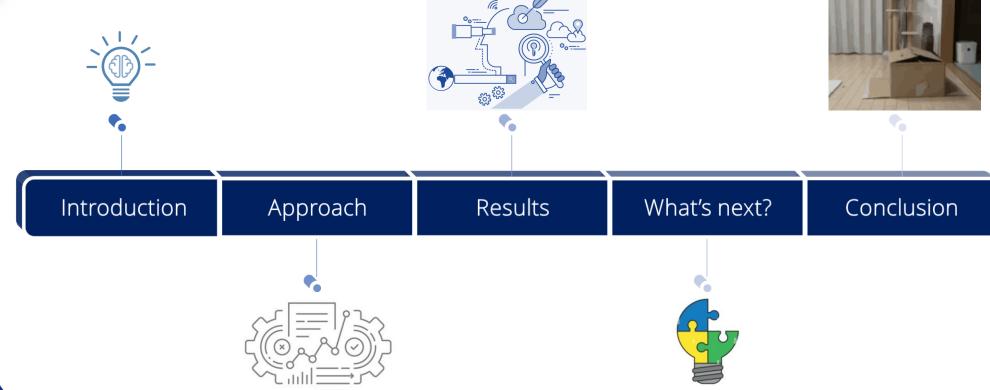
SMARTQAM

New advanced QA testing platform using autonomous AI and full coverage

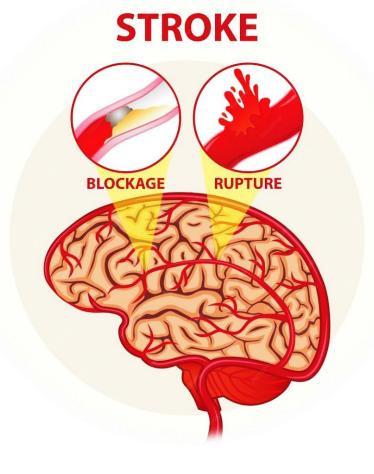
RIVER EU

New AI for a more resilient and sustainable steel supply chain

Outline

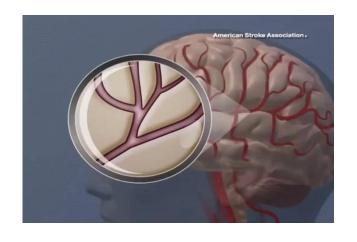


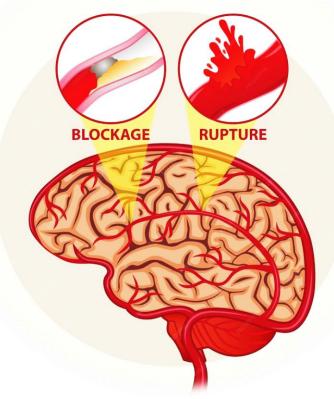
Alteration of blood supply to the brain



Alteration of blood supply to the brain

Ischemic ~87% of all strokes





Haemorrhagic ~10-15% of all strokes

As per World Stroke Organisation,

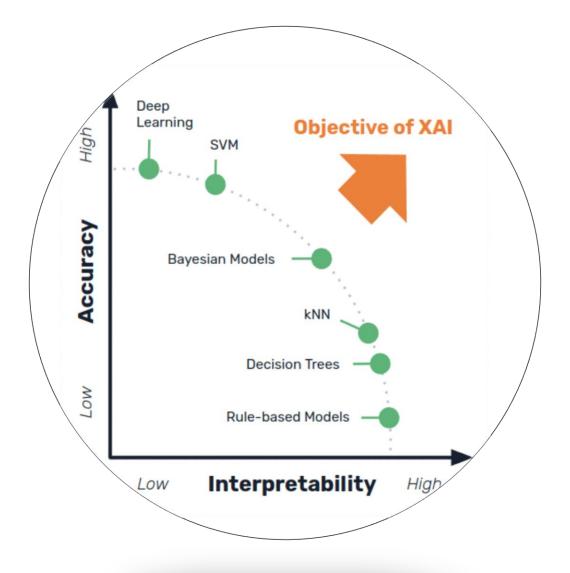
- ✓ 2nd leading cause of death
- √ \$890 billion annually
 - ✓ \$1 trillion by 2030

As per World Stroke Organisation, **12.2M** ✓ 2nd leading cause of death new strokes each year √ \$890 billion annually √ \$1 trillion by 2030 people are living with are linked to 10 the stroke modifiable Estimated aftermath risk factors 35% In Spain, increase in 10 years 143M people over age 25 will 1 in 5 have experience recurrent stroke in their lifetime stroke

Our goal is to understand,

1. What contributes to stroke possibility?

- 2. Can we derive prevention strategies?
 - Influence of specific biomarkers

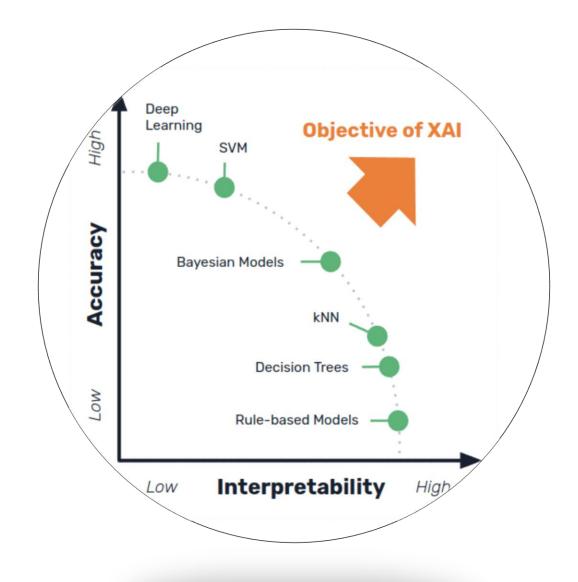


Approach

Our goal is to understand,

- 1. What contributes to stroke possibility?
 - Causal Al not just correlations!
- 2. Can we derive prevention strategies?
 - Influence of specific biomarkers
 - Rule based learning model Tsetlin Machine

If A and not B, then class X



The ladder of causation

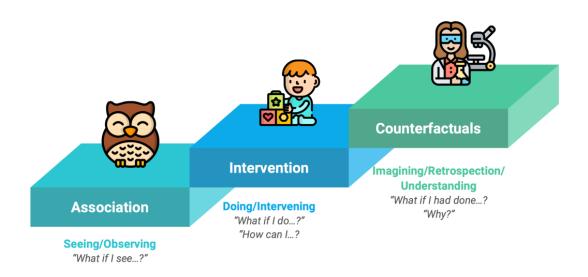


Image by Esra Simsek (based on Pearl's Ladder of Causation)

The ladder of causation

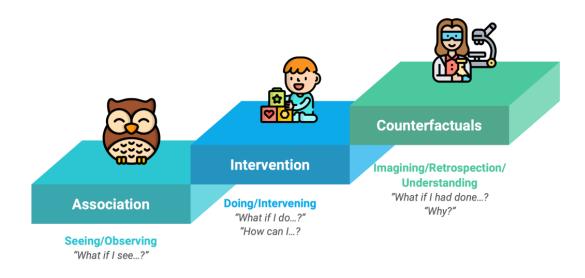


Image by Esra Simsek (based on Pearl's Ladder of Causation)

Tsetlin Machine

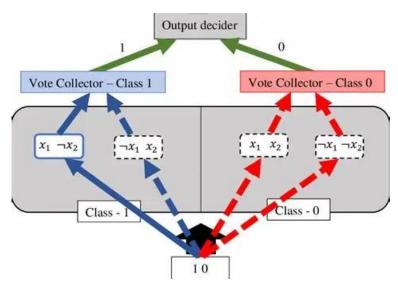
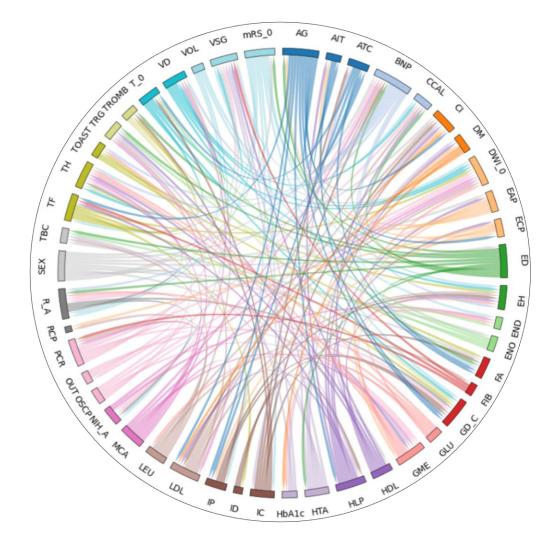


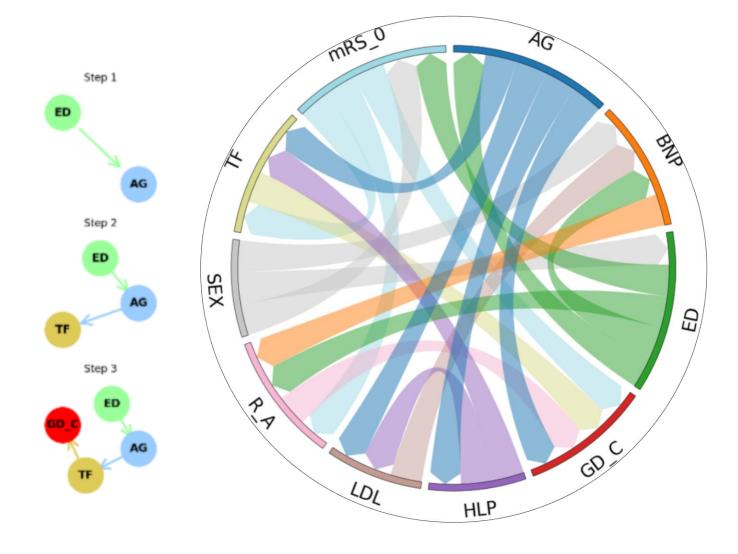
Image from 10.48550/arXiv.2005.05131 by Ole-Christoffer Granmo

Causal discovery,

- 1. Shows effects of each feature on others
- 2. Directional identifying cause and effect
- 3. How to identify the most influential ones?



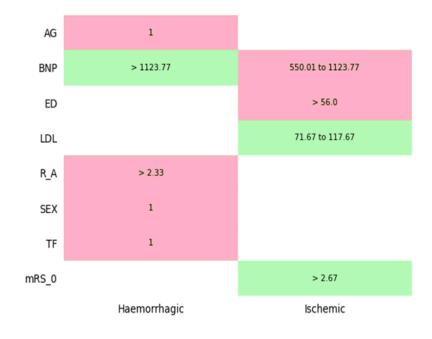
- Degree Centrality:
 Number of direct connections
 Higher value → broad influence
- Betweenness Centrality:
 A node's link to others
 Higher value → critical link
- 3. Compare with domain knowledge!



Results

Rules/clauses of Tsetlin Machine,

- 1. Binarization with bins for continuous variables
- 2. Voting weights for each generated clause
- 3. Helps identify,
 Most important features for a class
 Their value ranges



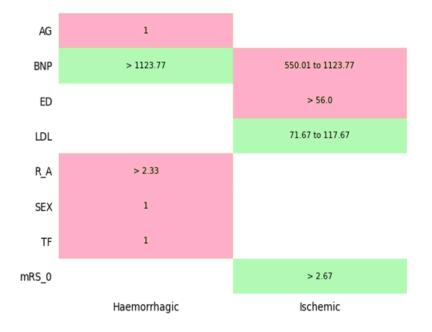
Results

Rules/clauses of Tsetlin Machine,

The clause for ischemic stroke would then be:

if mRS_0 > 2.67 and LDL between 71 – 117 mg/dL and Age NOT > 56 and BNP NOT between 550 – 1123 pg/mL then Ischemic.

Preliminary results* - subject to further investigation



Introduction Approach Results Results What's next?

- ✓ Remove bias in class distribution
- ✓ More robust model training
- ✓ More scenarios to run

More data

- ✓ Remove bias in class distribution
- ✓ More robust model training
- ✓ More scenarios to run

More data

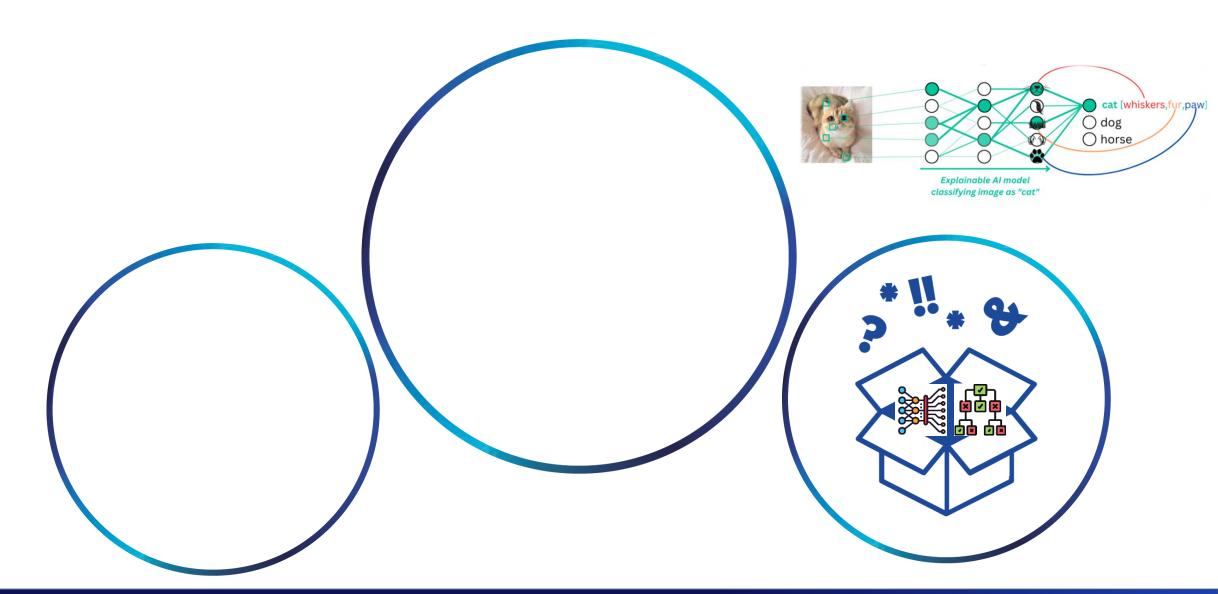
Improve causal inference

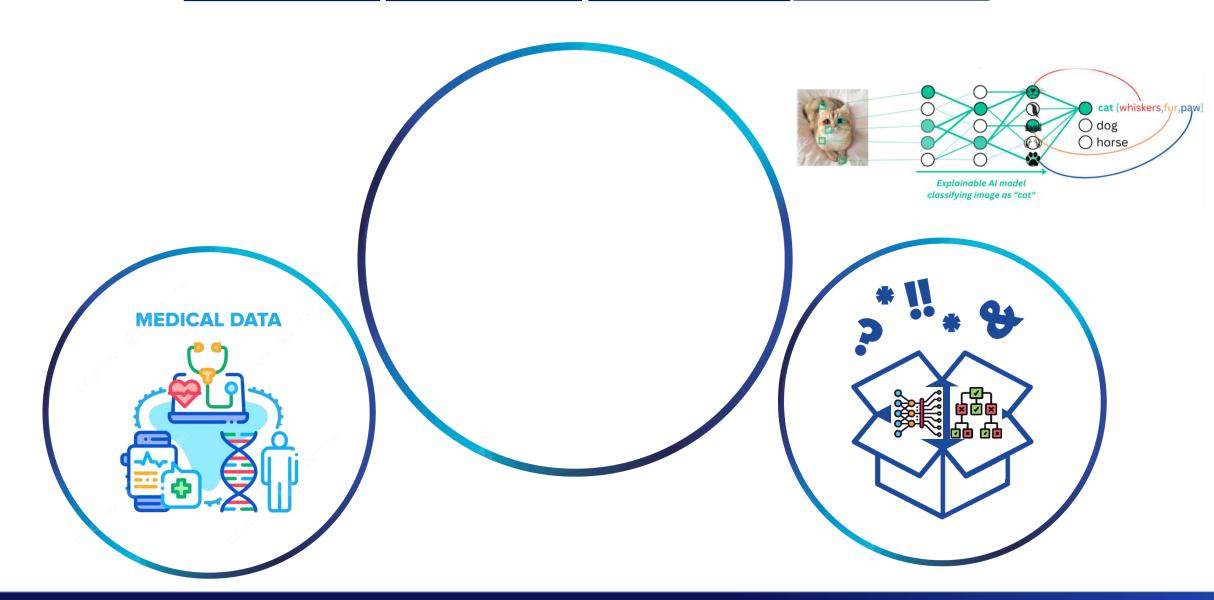
- ✓ Check for 'hidden' confounders
- ✓ Advanced algorithms for causal discovery
- ✓ Ensure the direction of causality with domain knowledge

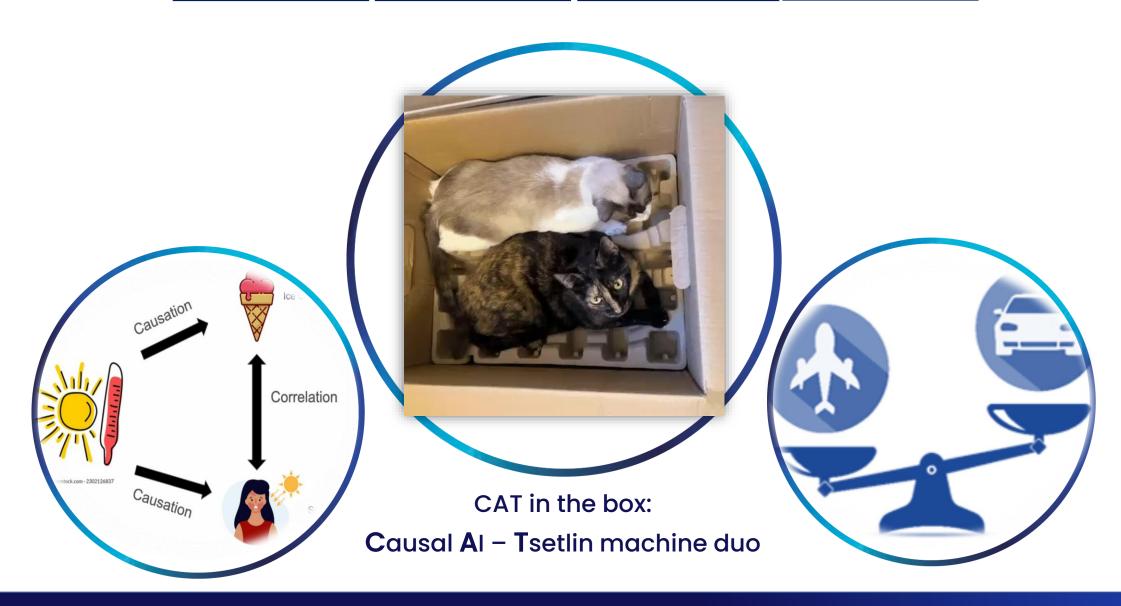
Introduction Approach What's next? Results Results ✓ Remove bias in class distribution ✓ More robust model training More data ✓ More scenarios to run ✓ Check for 'hidden' confounders Improve ✓ Advanced algorithms for causal discovery causal ✓ Ensure the direction of causality with inference domain knowledge ✓ Improve binarization with domain knowledge Fine tune

- ✓ Resampling of data
- ✓ Clause weight distribution

TM clauses







Thank you!

(O) Barcelona

Carrer Balmes, 89, 08008, Barcelona, Spain

+34 931 411 982

Madrid

Paseo de la Castellana 163, 28046, Madrid, Spain

+34 911 123 913

(O) Lisboa

Avenida da Republica, 50 81050-196, Lisboa, Portugal

+34 931 411 982

© Luxemburgo

18, Boulevard de Kockelscheuer, L-1821, Luxembourg

+352 661 342 074

contact@capitole-consulting.com

capitole-consulting.com

Jalpa Soni Senior Data scientist, Al Innovation Lab

jalpabensoni@capitole-consulting.com

<u>LinkedIn</u> <u>Google Scholar</u>

