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sample efficiency

Use ‘expert’ knowledge of an operator in executing reactive power control for a PV farm.

Enhance grid resilience by empowering operators to make informed decisions.
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● Operational buses unaffected by grid code violations
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● Two Buses: Two buses are controlled simultaneously
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Richer dataset to capture underlying patterns effectively
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Thank you!



Constraints and Limitations

111

1. PalaestrAI framework is utilized for implementing the reactive power controller.

1. The choice of the SAC algorithm for policy formulation and comparison in this study is motivated by its
compatibility with continuous action spaces. SAC is selected for its efficient learning capabilities, leveraging
entropy maximization and stability.

1. Research by Haarnoja et al. demonstrates that SAC outperforms other state-of-the-art model-free deep RL
methods like the off-policy Deep Deterministic Policy Gradient (DDPG) algorithm and the on-policy Proximal
Policy Optimization (PPO) algorithm [17]. This suggests that using stochastic, entropy-maximizing RL
algorithms can offer improved robustness and stability.

1. BCO is selected because of the relative simplicity of the approach and availability of high-quality data from the
MIDAS project, ensuring reliability. Although Advantage Weighted Actor-Critic (AWAC)offers a method to
incorporate prior data and reduce learning time, it is most advantageous when the prior data is suboptimal [28].
Since this thesis relies on data from a reliable and optimal source, behavioral cloning is the preferred method.

1. Simulation time for each experiment scenario is set at one year, with each year requiring one hour for
simulation alone. Both training and testing will demand additional time.
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Motivation: Why Voltage Control?

112

1. Voltage levels impact the performance and longevity of customer and power system equipment. Operating
outside the designated voltage range can lead to inefficiencies and damage. Low voltages can impair the
performance of devices like light bulbs and induction motors, while high voltages can cause equipment
damage.

1. Reactive power utilization imposes demands on transmission and generation resources. Minimizing reactive-
power flows is necessary to optimize the transfer of real power across congested transmission interfaces.
Excessive reactive power production can also restrict a generator’s capacity to supply real power.

1. The movement of reactive power within the transmission system results in real-power losses. Addressing these
losses requires additional capacity and energy, which adds to operational costs and reduces overall system
efficiency.
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Motivation: Reactive power management is COMPLEX!

113

1. Real power can travel long distances efficiently, while reactive power needs to be dispersed across the power
system.

1. The system’s reactive power requirements evolve over time due to variations in:
a. Generation
b. Transmission configurations &
c. Load levels

1. For example:
a. During periods of low load, excess reactive power generated by the system must be absorbed
b. Under heavy load, additional reactive power must be supplied
c. Reactive losses surpass real losses at both low and high line loading, substantially reducing the

transmitted real power if uncompensated
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Motivation: Why reactive power through operator?

114

1. Reactive power management rely on centralized approaches, primarily overseen by the system operator.

1. This centralized control is critical due to its requirement for a comprehensive understanding of system needs
and the ability to strategically deploy resources.

1. While suppliers, such as generators with reactive-power capabilities, lack autonomy in determining voltage-
control needs, the system operator possesses the necessary information to make informed decisions.

1. Moreover, customer choices in load patterns and generation do not provide adequate insight into reactive-power
requirements.

1. This highlights the necessity of the system operator’s role in resource deployment.

1. The limited transportability of reactive power compared to real power highlights the potential benefits of
distributed generators providing reactive power control at strategic locations.
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Managing Reactive Power

115

1. Similar to real power, ensuring the balance of reactive power throughout the system is essential.

1. A mismatch in reactive power, unlike real power, can lead to voltage collapse rather than loss of
synchronicity.

1. Reactive losses on a transmission line can be positive or negative, depending on the dominance of
inductive or capacitive reactance, unlike real power losses, which are consistently positive as they
represent physical heat dissipated into the environment.

1. However, operational considerations for balancing reactive power differ from those for real power.

1. Rather than instructing generators to produce a specific amount of reactive power, they are directed to
maintain a certain voltage magnitude at their buses, adjusted through the generator field current.

1. This approach simplifies power flow analysis, as specifying voltage magnitude effectively ensures
balanced reactive power without explicitly knowing the total required amount.
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Why PV and not conventional reactive power compensation techniques

116

1. Inverter has full control over reactive power, similar to conventional devices like STATCOMs.

1. Cost of inverter has reduced at higher rate than traditional var compensation devices.

1. Distributed generation resources, dispersed throughout power system, can provide reactive power in a
distributed manner as well.

a. Reactive power compensation should be done locally, near the reactive loads to avoid transmission
losses (Enhanced Efficiency).

b. Diverse combinations of reactive injections and optimizing system operation (Flexibility).
c. No need for extra installation for reactive power management (cost).
d. (Scalability) Higher PV penetration possible with seamless system upgrades (no more a drawback!).
e. Reliability: Dependency on extensive capacitor banks increases grid vulnerability to equipment failures

and cyber attacks. In contrast, distributed control systems with limited communication between smaller
components offer enhanced resilience against cyber threats.
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Limitations of PV inverter capabilities
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Limitations of PV inverter vs Wind inverter capabilities
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PV Inverters:

1. Solar Irradiance Variability: PV inverters must handle rapid changes in solar irradiance due to passing

clouds, which can cause fluctuations in power output.

2. Maximum Power Point Tracking (MPPT): PV inverters need efficient MPPT algorithms to optimize

the energy harvest from solar panels under varying conditions.

Wind Inverters:

1. Wind Speed Variability: Wind inverters must handle the variability in wind speed, which can lead to

fluctuations in power generation.

2. Turbine Dynamics: Wind inverters may need to work with turbine control systems (e.g., for blade pitch

adjustment) to optimize performance and protect the system under extreme conditions.



Grid Code
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VDE-AR-N 4110

Generation system must be connected to the grid for at least 60s.
Each set-point provided by the grid operator must be attainable within 4 minutes.

Association for Electrical, Electronic and Information Technologies
(Verband der Elektrotechnik, Elektronik und Informationstechnik)

ΔV >= 5%

ΔV < 5%

ΔV < 5%



Operational status of bus (Grid Code DIN 50160 for MV):
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Literature Review: Bus

Bus in power system analysis, refers to a reference point representing an electrically distinct node, where different

components of the system converge.

It is equivalent to a single point in the circuit and marks the location of either a power-generating generator or a power-

consuming load.
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Literature Review: Reinforcement Learning

Markov Decision Process provides a mathematical framework to characterize an ideal environment in
RL, enabling the formulation of theoretical insights into the problem.

MDP formulates the challenge of acquiring knowledge through interactions to accomplish an objective.

The complete MDP can be represented by a 6-tuple M = (S, A, T, d0 , r, γ), 
S - state space,
A - action space,
T (st+1|st , at) - transition distribution,
d0(s0 ) - initial state distribution,
r(st, at) - reward function,
γ ∈ (0, 1] - discount factor.

This is applied on the future rewards to factor in its importance in current timeline.
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In the context of a MDP, the goal is to determine a policy π(at|st ), representing the likelihood of taking action at
given the current state st.

Whereas in RL, the focus shifts to identifying an optimal policy π(a|s)∗ that maximizes the expected return across all
trajectories generated by the policy.
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Literature Review: Reinforcement Learning
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Let Y = (Xt )t∈N be a family of random variables, where Xt ∈ S. Y is a Markov chain if the following condition
holds:

P (Xt+1 = sjt+1 |Xt = sjt , Xt−1 = sjt−1 , . . . , X0 = sj0 ) = P (Xt+1 = sjt+1 |Xt = sjt ).

This condition states that the probability of Xt+1 being in state sjt+1 , given the sequence of previous states up to time
t (Xt , Xt−1, . . . , X0) = is equal to the probability of Xt+1 being in state sjt+1 , given only the current state Xt .

This property characterizes a Markov chain as having no memory of its past states beyond the current state.
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Literature Review: Reinforcement Learning
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Objective: Minimize voltage mismatch in distributed system in Volt-Var Mode

Equation:

Where,
qt : Reactive power at time step t
qt+1 : Reactive power at time step t+1
D : Diagonal matrix
Vt : Voltage at time step t
[·]+ : Projection if value exceeds range [qg, q-g ]

125

Literature Review:
Q- Controller Equation for Reactive Power Set Point
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It is employed to determine the optimal policy for maximizing cumulative rewards.

This principle asserts that the optimal expected future cumulative reward for a given state s can be defined as the maximum expected sum of
rewards achievable by selecting the best action in that state.

This is mathematically formalized by the Bellman optimality equation:

V∗(s) = max[R(s, a) + γEP (s'|s,a) [V∗(s' )]] =: maxa Q∗(s, a)

In this equation, the maximization is performed over all possible actions a available in state s, where:
• V∗(s) - optimal value function for state s.
• R(s, a) - immediate reward obtained by taking action a in state s.
• γ - discount factor that determines the importance of future rewards relative to immediate rewards.
• EP (s' |s,a) [V∗(s' )] - expected value of the optimal value function for the successor state s'.
• P (s' |s, a) - state-transition function, which specifies the probability of transitioning to state s' given the current state s and
action a.
• Q∗(s, a) - optimal action-value function for the state-action pair (s, a).
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Literature Review: Bellman’s optimality principle
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Literature Review: SAC (Application of Reinforcement Learning)
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1. fc_dims: Dimensions of the hidden layers of the agent’s actor and critic networks. "fc" stands for "fully
connected".

1. update_after: Specifies the number of environment interactions before starting gradient descent updates. This
ensures that the replay buffer (a place where experiences of agent are stored) is adequately filled with diverse
experiences before initiating the training process, affecting the initial delay in training.

1. batch_size: Defines the size of mini-batches used in each stochastic gradient descent update. It specifies the
number of experiences sampled from the replay buffer to compute each update of the neural network weights,
affecting the precision and efficiency of the gradient updates.

1. update_every: Determines the frequency of gradient descent updates after the initial delay specified by
update_after. It controls how often the agent’s policy and value function are updated based on experiences stored
in the replay buffer, influencing the tempo of learning.
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Literature Review: SAC (Key parameters)
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According to IEEE standard 1547-2018 [31], DERs are required to possess specific reactive power control
functionalities, which include the following modes, each of which can be activated individually:

1. Constant power factor mode
2. Voltage-reactive power (Volt-VAR) mode
3. Active power-reactive power (Watt-VAR) mode
4. Constant reactive power mode

129

Literature Review: Inverter Control Modes
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In this mode, the DER actively regulates its reactive power output based on voltage levels, adhering to a voltage-
reactive power piece-wise linear characteristic.

The mode includes autonomous adjustment of reference voltage and characteristics within specified parameters.
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Literature Review: Voltage-Reactive Power Mode
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Literature Review:
Difference between State-value and Action-value functions
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State-Value Function Vπ (s): represents the expected return (cumulative future rewards) the agent can obtain from a
given state s under a certain policy π. In other words, it quantifies the desirability of being in a particular state s and
following a specific policy thereafter.

Action-Value Function Qπ (s, a): represents the expected return the agent can obtain by taking action a in state s and then
following a certain policy π. It quantifies the desirability of taking a particular action a in a specific state s and following a
specific policy thereafter[36]
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Deterministic (batch) gradient descent uses:
● entire dataset for each update and
● is more stable
● but slower

While stochastic gradient descent uses:
● a single example (or a mini-batch) for each update,
● which is faster and
● can handle larger datasets
● but introduces more noise into the optimization process.
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SUP SAC BCO

System Description: Agent
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Objective function

● Voltage levels of all buses

● Voltage of observed bus

● Operational buses unaffected by grid code violations

No. of operational bus * distance from transformer
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Objective function

● Voltage levels of all buses

● Voltage of observed bus

● Operational buses unaffected by grid code violations

System Description: Agent
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System Description: Weather Bremen 2020
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System Description: Grid
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System Description: Grid



Why SAC, and not any other algorithm
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1. State-of-the-Art Performance:

○ High Performance: SAC is known for its high performance on continuous action space tasks, often

outperforming other algorithms in terms of learning efficiency and final performance.

○ Robustness: SAC demonstrates robustness and stability in training, making it a reliable choice for

comparing against other algorithms.

2. Exploration and Exploitation Balance:

○ Entropy Regularization: SAC uses an entropy term in its objective function, encouraging exploration by

preventing the policy from becoming too deterministic too quickly. This balance between exploration and

exploitation can lead to better overall performance.

3. Sample Efficiency:

○ Off-Policy Learning: SAC is an off-policy algorithm, meaning it can reuse past experiences stored in a

replay buffer. This significantly improves sample efficiency compared to on-policy algorithms, which

require new data for each update.

4. Scalability:

○ Scalability to High Dimensions: SAC can handle high-dimensional state and action spaces, making it

suitable for complex tasks with large observation and action spaces.
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Why SAC, and not any other algorithm

140

5. Stability:

○ Stabilized Training: SAC incorporates techniques such as clipped double Q-learning and slow delayed

updates of target networks, which help stabilize training by reducing the overestimation bias common in

value-based methods.

6. Wide Adoption and Benchmarking:

○ Benchmarking: SAC is widely used and benchmarked in the RL community, providing a solid reference

point for comparison. Its performance on standard benchmarks can help validate the effectiveness of

other algorithms.
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Other possible algorithms
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Model-Free Algorithms

1. Deep Q-Network (DQN)

2. Twin Delayed Deep Deterministic Policy Gradient (TD3)

3. Proximal Policy Optimization (PPO)

4. Trust Region Policy Optimization (TRPO)

5. A3C (Asynchronous Advantage Actor-Critic)
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Grid Architecture
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1. Why Bus 5?

a. Intermediate position: Bus 5 is in the middle of the grid. It is in feeder 1 and is affected by the all the

buses along the line, bus 2, 3 and 4. Therefore, victim of all the changes on other buses.

b. Impact of Bus 5: is primarily only on one other bus. This way we can see the impact of changes on this

bus 5 on ONLY one other bus. Not having too much influence on the behavior of the other buses.

1. Why Bus 5 and 11?

○ Parallel buses: Chosen for comparison because it runs parallel to Bus 5, providing a comparative node

that can offer insights into voltage behavior across different, yet parallel, paths of the same feeder.
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Neural Network Optimization : 5000 Data Point Model
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Neural Network Optimization : 5000 Data Point Model
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Neural Network Optimization : 5000 Data Point Model
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Neural Network Optimization : To analyze the models
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Mean

Variance

Coefficient of Determination

Root of MSE



Neural Network Optimization
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Neural Network Optimization
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Variance
Accuracy
Good Fit
Precision



Sample Efficient Model for SUP vs BCO: Voltage
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Sample Efficient Model for SUP vs BCO: Reward
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Optimizing Hyperparameters: SAC vs BCO
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Optimizing Hyperparameters: SAC vs BCO
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Two buses: Itachi vs SAC vs BCO: Voltage
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Two buses: Itachi vs SAC vs BCO: Reward
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All Buses Performance with Q-Controller equation
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SUP: Voltage plots for all dataset combinations
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SUP: Voltage plots for all dataset combinations
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BCO: Voltage plots for all dataset combinations

158

Methodology Evaluation Conclusion
System

Description
AlgorithmsIntroduction



BCO: Voltage plots for all dataset combinations
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Future Work
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1. Developing a more advanced neural network model may enhance performance. The current study utilizes

randomized search for model hyperparameter optimization, but other methods such as grid search and genetic

algorithms could be explored.

○ The neural network architecture in this study is classical, with an input layer, output layer, and a few

hidden layers. Investigating more complex architectures may be beneficial, especially when examining

the agent’s control of the entire grid through 14 buses. Given that each bus may exhibit distinct

behaviors, a more intricate architecture could better capture these patterns.

2. Modifying the objective function to penalize undesirable voltage variations and violations can ensure stricter

compliance with grid code standards.

3. Increasing the number of repetitions for each experiment can provide deeper insights into performance variations

and strengthen confidence in the results.



Challenges
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1. Challenges encountered during the thesis included working with a code base that was still in development.

2. Each simulation lasted for a lengthy period of 2 hours and 40 minutes, posing a bottleneck for executing a large

number of cases. Although resources like DGX, a high-performance computing system developed by NVIDIA,

were available, it was deemed unreliable at the time. Consequently, the decision was made to conduct

simulations solely on the local laptop, although at the expense of longer simulation times.

3. This limitation resulted in SAC hyperparameter optimization being based on a single run, leading to reduced

confidence in the results.


