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Introduction

• Universities collect extensive student data (e.g., admission, examination) that can be 

leveraged for evaluation and evidence-based development of study programmes.

• Using evidence about student success and in particular making use of AI-based 

approaches is an emerging field [2][3]. 

• Aims of our study:

• Using AI-based approaches to answer institutional research questions within a specific context (case) at a large Austrian university

• Case: Study entrance phase of STEM fields (N = 2532) 

• Objectives: Analyze student success within the entrance phase and identify barriers for non-traditional students during the entry 

phase; development of measures

• Efficiency within this context: achieving program objectives while optimizing resources 

(e.g., timely degree completion, graduation rates, alignment with labor market demands)
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Measuring student success and influencing factors 
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• Common criteria: Success rates, passed exams, grades, credit points, and graduates 

within the standard study period [4][5]

• Performance-Based Funding (PBF): models use metrics like success rates, study duration, 

and graduation within the standard period (+2 semesters) [7]

• Mixed success in achieving desired outcomes [10][16][17][18].

• Types of factors [7]:

• individual factors: E.g. diversity factors (social background, prior education, school grades),

• context factors: Employment, caring responsibilities,

• study process factors: Performance, learning behavior, motivation [7][8] 

• institutional factors: Policies, support systems, and structural conditions.



Measuring student success and influencing factors 

• Performance data (e.g., prior academic achievements) consistently show the strongest 

effects in multivariate models

• Key findings from German-speaking universities:

• Student employment significantly impacts success [6][10].

• entry requirements and diversity factors (e.g., age, social, and educational background) play crucial roles 

[7][12].

• Steering and Context Factors:

• Effective steering requires capturing all central influencing factors on success [9].

• Factors outside the university’s control must be modeled as context factors to ensure meaningful 

evaluations and interventions [10].
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Methodology
Institutional research questions

1. What is the proportion of students enrolled in a given semester who, after one 

academic year,

a. …have successfully completed all courses suggested?

b. …have not taken any courses?

c. …have partially completed courses?

2. To what extent can differences be identified between different student groups? (gender, age 

at entry, university entrance, foreign language migration background and parents' educational background)

3. Which characteristics are most relevant in predicting success in the HEI?

4. What role do interaction effects between combinations of characteristics play?
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Methodology
Data
• Administrative and exam data of students from eight different study programs (N = 2532) 

belonging to STEM disciplines at a large Austrian university

• Carried out within a working group specifically set up to identify potential adverse 

conditions for specific student groups and to develop measures to support students

• Importance of the entrance phase: Critical for onboarding students from diverse 

backgrounds, fostering belonging, and ensuring continuation [6]

• Before further analysis data was retrieved from the central data warehouse, prepared 

and checked for inconsistencies 
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Methodology
AI methods modelling student success and operationalization

Machine Learning Models:

• General Linear Model (GLM) with logistic regression

• Random Forests (RF)

• Boosted Logistic Regression (LogitBoost)

• Support Vector Machine (SVM)

• Gradient Boosting Machine (GBM)

Advantage: Greater predictive power compared to classical 
regression methods.

Stakeholder Communication:

• Results require explanation and moderation for stakeholders

• Graphical visualizations developed for easier interpretation

• Influence of variables reported using Odds Ratios for better 
clarity
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Student success 
within the entry 

phase
Success defined as passing 

the legally mandated 
entrance phase within one 

year (UG 2002, §66)

Gender
(male, female & 

divers) 

School type 
(STEM vs. others) 

Parents educational 
background 

(university vs. no 
university)

Age 
(numeric)

Foreign language 
background 

(yes vs. no)



Methodology
Model training and validation procedure

• Data Splitting:

• Dataset split into training set (70%) and validation set (30%) using non-replacement sampling

• Cases with missing values removed for complete-case analysis

• Cross-Validation:

• Repeated 10-fold cross-validation with 3 repetitions

• 25 stratified resamples generated during training based on the outcome variable

• Model Training:

• Models trained using the caretList() function from the caretEnsemble package [15]

• Features standardized (centered and scaled) before fitting

9



Results
Research questions 1 and 2

• Research questions 1 and 2 answered by descriptive methods:

• In-depth analysis by visualizing different patterns shows e.g. a descriptive gender gap:
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Figure 1 – Example of descriptive analysis



Results
Research questions 3 and 4 – Full model

• Comparison of Predictive Power:

• Fit indices and ROC curves used to evaluate model performance.

• ROC curves: Preferred model has the curve closest to the top-left 

corner (highest AUC).
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Figure 2 – Comparison of ROC curves



Results
Research questions 3 and 4 – Full model

• Comparison of Predictive Power:

• Fit indices and ROC curves used to evaluate model performance.

• ROC curves: Preferred model has the curve closest to the top-left 

corner (highest AUC).

• Key Findings:

• Logistic regression (GLM) and Gradient Boosting Machine (GBM) 

had the best overall fit (highest AUC and Kappa values)

• Overall model performance ranged from poor to medium fit
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Fit of full 
models

Fit-Indices

AUC Mean accuracy Mean Kappa

glm 0.72 0.72 0.14

rf 0.63 0.72 0.03

LogitBoost 0.58 0.70 0.05

SVM 0.55 0.72 0.01

GBM 0.71 0.72 0.14

Figure 2 – Comparison of ROC curves

Table 1 – Comparison of model indices



Results
Research questions 3 and 4 – Full model

• Influence of Diversity Indicators investigated by further analysis of logistic regression (glm)

• Model Explanatory Power:

• McFadden’s R2 = 0.11; Likelihood-ratio R2
ML​ = 0.118; Nagelkerke R2: 0.169 (modest explanatory power) 

• Key Findings (Odds Ratios):

• Programme Effects: Differences between study programs had a larger impact on success than diversity 

indicators

• Diversity Indicators: 

• Lower success probability: Older students, female students, students from non-science/math school backgrounds.

• Higher success probability: Students with university-educated parents (FiF: No), students with no migration 

background

• Interaction Effects: No significant interaction between school type and gender
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Results
Research questions 3 and 4 – all programmes
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Figure 3 - Odds-Ratio – All programmes



Results
Research questions 3 and 4 – all programmes vs. programme 6 only
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Figure 3 - Odds-Ratio – All programmes Figure 4 - Odds-Ratio – Programme 6 only



Conclusion and future work
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• Predicting study success:

• AI and machine learning models can predict study success, with diversity indicators improving model 

sensitivity and specificity.

• Models without diversity indicators often have less explanatory power, aligning with existing literature 

[14].

• Diversity indicators: Impact varies by study program and student sample diversity, requiring tailored 

analyses and measures.

→ Example measures: Bridging courses for older students or students from different fields; mentoring

• Systematic use of diversity indicators:

• Essential for improving quality and efficiency of study programs: Ensures meaningful interventions

• Particularly relevant for diverse student bodies and entrance-phase success



Conclusion and future work
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• Contextual factors, data availability, and variable selection affect results

• Future analyses:

• Extension to other degree programs and institutions for generalizability

• Develop diversity monitoring systems for ongoing evaluation

• AI models can support evidence-based teaching development and decision-making at 

universities and therefore, can increase quality and efficiency of study programmes by:

higher success rates, higher percentage of timely degree completion

• Systematic processes are needed to translate findings into actionable measures

• Collaboration between departments and stakeholders is critical 

• Models should align with theoretical goals and stakeholder-defined objectives, not just 

predictive power
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