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Research Background

• Graph-structured data have widespread applications in social 
networks, finance, and biology.

• HGNNs leverage multi-typed nodes and edges to capture richer 
semantics compared to traditional GNN, leading to better 
performance on heterogeneous tasks.

Traditional Graph Heterogeneous Graph
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Preliminaries
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Problem Formulation

Problem Setting

Input: A  heterogeneous graph 𝐺𝐺 = 𝒱𝒱, ℰ,𝑋𝑋 with 
node types 𝑇𝑇 and edge types 𝑅𝑅

Task: Classify nodes of the primary type 𝑡𝑡𝑝𝑝

Attacker’s Goal: 
• Inject trigger nodes 𝒱𝒱𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛𝑛𝑛𝑛𝑛 along with their 
features 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 and edges ℰ𝑛𝑛𝑛𝑛𝑛𝑛 into the 
graph.

• Maximize attack success while minimally 
affecting clean nodes.

Formal Objective

Attack Objective:

�𝐺𝐺∗ = arg max
�𝐺𝐺∈ℱ 𝐺𝐺

�
𝑣𝑣∈𝒱𝒱 𝑝𝑝

1 𝑓𝑓θ �𝐺𝐺, 𝑣𝑣 = 𝑦𝑦𝑡𝑡 + �
𝑣𝑣∈𝒱𝒱𝑡𝑡𝑝𝑝∖𝒱𝒱

𝑝𝑝

1 𝑓𝑓θ �𝐺𝐺, 𝑣𝑣 = 𝑦𝑦𝑣𝑣

where：

�𝐺𝐺 = �𝑉𝑉, �𝐸𝐸, �𝑋𝑋 , �𝑉𝑉 = 𝑉𝑉 ∪ 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛, ℰ̃ = ℰ ∪ ℰ𝑛𝑛𝑛𝑛𝑛𝑛, �𝑋𝑋 = 𝑋𝑋

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛

𝒱𝒱𝑝𝑝: Set of poisoned nodes 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛: Feature matrix of injected nodes       ℰ𝑛𝑛𝑛𝑛𝑛𝑛: Edges from injected nodes
1(⋅): Indicator function ℱ 𝐺𝐺 : Space of allowed graph modifications
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Edge Generator

CC
Core Idea: Select auxiliary nodes with the highest average embedding similarity to ensure 
that trigger connections align with key regions of the graph.

Select all primary-type nodes labelled as the target class 𝑦𝑦𝑡𝑡, denoted as 𝑉𝑉𝑦𝑦𝑡𝑡
For each target node 𝑣𝑣𝑦𝑦𝑦𝑦 ∈ 𝑉𝑉𝑦𝑦𝑦𝑦 retrieve its 1-hop neighbors of the trigger type through 
edge relation 𝑟𝑟𝑡𝑡𝑝𝑝,𝑡𝑡𝑡𝑡𝑡𝑡 forming the neighbour set 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

1 𝑣𝑣𝑦𝑦𝑡𝑡

Identify 2-hop auxiliary nodes 𝑉𝑉𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎
2 through  𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡

1 and edges 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑏𝑏 ∈ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

Extract the node embeddings 𝒛𝒛𝒗𝒗 for all 𝑣𝑣 ∈ 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎2 using a surrogate model

Compute the influence score base on embeddings I 𝑣𝑣aux
2 with cosine

Connect each newly inserted trigger node to the selected top auxiliary nodes

Rank auxiliary nodes by I 𝑣𝑣aux
2 select the top-𝑑𝑑𝑡𝑡𝑏𝑏 nodes for each auxiliary

Influence Score Calculation:  I vaux
2 = 1

vaux
2 −1

∑
𝑣𝑣′∈𝑉𝑉aux

2 , 𝑣𝑣′≠𝑣𝑣
𝑧𝑧𝑣𝑣

|𝑧𝑧𝑣𝑣|2
⋅

𝑧𝑧𝑣𝑣′
|𝑧𝑧𝑣𝑣′|2



Experiments

𝑛𝑛: Number of target nodes under attack
𝑓𝑓𝑏𝑏:Backdoor Model
𝑦𝑦𝑡𝑡:Attacker specified target label

𝐴𝐴𝐴𝐴𝑐𝑐𝑓𝑓𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐): Accuracy of the clean model on clean 
data
𝐴𝐴𝐴𝐴𝑐𝑐𝑓𝑓𝑏𝑏(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐): Accuracy of the backdoor model on 
clean data



Conclusion and Future Work

Conclusion
• Proposed HeteroBA, a structure-based backdoor attack for heterogeneous graphs.
• Uses feature and edge generators to insert semantically valid trigger nodes.
• Achieves high attack success rate (ASR) with minimal clean accuracy drop (CAD).
• Demonstrates strong stealthiness and reveals security risks of HGNNs.

Future Work
• Extend to more datasets (e.g., DBLP, Amazon, OAG).
• Improve scalability with sampling-based clustering and mini-batch KDE.
• Test on diverse victim models (e.g., GAT, Transformer-based HGNNs).
• Develop adaptive defense mechanisms against structure-aware backdoors.
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