
PRACTICAL APPLICATIONS OF
STATE-OF-THE-ART LARGE

LANGUAGE MODELS TO SOLVE REAL-
WORLD SOFTWARE ENGINEERING

PROBLEMS AUTONOMOUSLY

Y U R I J M I K H A L E V I C H

D U B A I , U N I T E D A R A B E M I R A T E S
E M A I L : Y U R I J @ M I K H A L E V I . C H

mailto:yurij@mikhalevi.ch

Yurij Mikhalevich, MSc Computer Science, is a
software engineer, machine learning engineer,
and researcher with over twelve years of industrial
software engineering experience and over ten
years of industrial machine learning engineering
experience focusing on computer vision, natural
language processing, and recommendation
systems. Presently, he is building QA Wolf AI – the
next-level AI expert at creating E2E tests.

RESEARCH
INTERESTS
On the right are Yurij's current
primary research interests.

Computer Vision

Reinforcement Learning

Natural Language Processing

Both image and video processing,
with the current focus on diffusion
models and vision transformers.

With a focus on recommendation
systems and generative language
models.

Systems that learn from the
environment are fascinating.

INTRODUCTION
In this work, we explore the practical application of cutting-edge LLMs as autonomous
software engineers on real-world tasks. We design an experiment in which an AI-
driven coding agent is given only the natural-language description of a software issue
(as one would find in a bug tracker or feature request) and is tasked with resolving the
issue by modifying the codebase without human assistance. We evaluate the following
state-of-the-art LLMs in this autonomous setting: Claude Sonnet 3.7, DeepSeek-V3,
DeepSeek-R1, and o3-mini-high. We have used the Aider agent to solve problems –
one of the best open-source AI software engineering agents. Additionally, we have
evaluated the Claude Code agent as one of the best closed-source AI software
engineering agents. We examine not only whether the LLM-powered agent can
produce a working solution but also the quality of the solution (linting, code style, user
experience) and the cost of the API calls.

RELATED WORKS: LLMS FOR CODE GENERATION
AND ASSISTANCE
The use of large neural models for code generation has rapidly progressed in recent years.
OpenAI’s Codex model, which powers GitHub Copilot, was among the first to demonstrate that an
LLM trained on vast amounts of code can produce syntactically correct and often functionally
correct code for given descriptions. Subsequent models have pushed these capabilities further:
DeepMind’s AlphaCode achieved performance on par with average human competitors in
programming contests, signaling the potential of LLMs to handle complex algorithmic problems.
Recent developments in the field have demonstrated significant progress in computational
capabilities. Specifically, models such as OpenAI o3-mini-high, DeepSeek-R1, and Claude Sonnet
3.7 have established new performance standards. These advancements indicate the continued
rapid evolution of LLM capabilities, with potential implications for fully autonomous software
engineering agents.

METHOD: INTRO
Our research methodology is designed to evaluate each LLM’s ability to autonomously resolve real
software issues under controlled conditions. We selected the open-source project Aibyss, a web-
based AI competition game, as our testbed. Aibyss is a TypeScript project (Nuxt/Vue frontend with
a Node.js backend using Prisma ORM) where users write AI bots to compete in a game. We chose
Aibyss because it is a non-trivial codebase with realistic features and bugs, yet manageable in
size. From Aibyss’s issue tracker, we picked ten issues that were open and well-described. These
issues covered a range of feature requests and bug fixes and were labeled by us based on the
perceived difficulty as “easy,” “medium,” or “harder”.

easy - “feat: draggable splitter between the code and the game screen should remember its position
between the page reloads”

1.

easy - “feat(rating): highlight top results in k/d, kills, deaths, and food eaten columns in the rating table”2.
easy - “chore(World): double the frequency of food spawns”3.
medium - “feat: allow turning off the bots of some users by setting the “inactive” field in the database on the
user object to ‘true”’

4.

medium - “feat: ensure that the game screen occupies all available free space to the right of the code editor”5.
medium - “feat(rating): add a new column to the rating table displaying the number of times the user
submitted the code”

6.

medium - “feat(sandbox): add an option to turn off sprites and replace them with circles to make debugging
easier”

7.

harder - “bug: fix the issue causing the bot code to submit when the user opens “API reference”8.
harder - “feat: add code versions and an option to revert to a previous version”9.
harder - “feat: surface bot execution errors to the user”10.

The actual GitHub issues with their descriptions can be found on the Aibyss project GitHub issues page:
github.com/move-fast-and-break-things/aibyss/issues?q=is%3Aissue%20label%3Aai-agents-evaluation-2025-03

METHOD: TASK SELECTION

https://github.com/move-fast-and-break-things/aibyss/issues?q=is%3Aissue%20label%3Aai-agents-evaluation-2025-03

METHOD: AGENTS AND LLM VARIANTS
Aider 0.75.2 + o3-mini-high 2025-01-31
Aider 0.75.2 + DeepSeek-V3
Aider 0.75.2 + DeepSeek-R1
Aider 0.75.2 + Claude Sonnet 3.7 20250219
Aider 0.78.0 + Claude Sonnet 3.7 20250219 with 32k thinking tokens – in this
variant, we enabled the “thinking mode” in Aider (using v0.78.0 with thinking support
for Claude 3.7)
Claude Code 0.2.35 – Anthropic’s Claude Code is a proprietary agent with a CLI
interface very similar to Aider’s that uses the Claude Sonnet 3.7 model under the
hood; this can be seen as a closed-source counterpart to Aider, specifically tuned
for Claude

METHOD: AUTONOMY AND STOPPING CRITERIA
We configured the agents to operate fully autonomously.
Aider was run with the --yes-always flag, meaning it would automatically apply its
proposed actions. In the case of Claude Code, we approved all its prompts manually.
Each agent was allowed to iterate until it produced no further actions.
One exception to full autonomy was with the o3-mini-high model in Aider: often, this
model did not automatically load the files it needed, and would ask the user to add
certain files to its context. Whenever Aider+o3-mini-high requested a file, we manually
added exactly that file (and no additional help), then let it continue. No other agent
required such interventions.

METHOD: EVALUATION CRITERIA
Works (Yes/No): Did the changes address the issue from the end-user’s perspective? For a
feature request, this meant the new functionality worked as intended. For a bug, the
erroneous behavior was fixed.
Linting Check Pass: We ran the project’s linting scripts. If the agent’s final code did not
pass them, we marked that as a quality issue.
User Experience (UX): We manually inspected if the solution introduced any noticeable UX
problems (e.g., a feature works but has a confusing UI or performance lag).
Code Quality: We reviewed the diffs to assess if the solution was implemented in a
reasonable and maintainable way. Inefficiencies, unmaintainable code, and obvious bugs
in the implementation were noted.

We selected these criteria because they mirror how work performed by a human software
engineer is usually evaluated. These qualitative judgments were used to label each successful
solution with additional notes (e.g., “works, but suboptimal code” or “works, except fails
linting”). Finally, we measured the cost of each solution in USD.

IMPLEMENTATION
All agent runs were conducted in a consistent environment. We created a fresh Docker container for
each run, which checked out the Aibyss repository at commit b4e58b2 (to ensure all models started
from identical code) and installed the necessary tools (Node.js, Aider, Claude Code, etc.). The agent
was then launched inside the container and given the issue text to solve. The prompt given to each
agent was uniform: "Please solve the following issue. Title: <issue title> Description: <issue body>".
We ensured the project’s dependencies and database (SQLite for this test) were properly set up in
each container so that the agent could run the app or tests if it chose to. The Aibyss codebase was
about 3.5k lines of TypeScript/JavaScript. Each agent configuration was run on each of the 10 issues,
yielding 60 trials in total.
After an agent completed, we committed its changes to a new branch and opened a pull request on
GitHub. This allowed us to use continuous integration (CI) results as an additional datapoint. We then
manually reviewed and tested the branch as described in the evaluation criteria. All of the PRs
created as part of this research can be found on GitHub:
github.com/move-fast-and-break-things/aibyss/pulls?q=is%3Apr+label%3Aai-agents-evaluation-
2025-03+

https://github.com/move-fast-and-break-things/aibyss/pulls?q=is%3Apr+label%3Aai-agents-evaluation-2025-03+
https://github.com/move-fast-and-break-things/aibyss/pulls?q=is%3Apr+label%3Aai-agents-evaluation-2025-03+

RESULTS

AIDER+O3-MINI-HIGH PROMPTING THE USER TO
MANUALLY ADD THE FILE IT NEEDS

UI ADDED BY CLAUDE CODE FOR CODE
VERSIONING (ISSUE 9)

Evaluating newer models: We plan to test open-source QwQ-32B with Aider to
see if it can match Claude’s performance. If successful, this could open the door to
more accessible autonomous coding (not relying on closed APIs).
Architect-editor agent design: We will experiment with an “architect” mode in
Aider, where one model (or one prompting style) is used to outline the solution
(select files to change, perhaps write pseudo-code or steps), and another model is
used as the “coder” to implement those steps.
Scaling to more tasks and projects: Our current test set is small. We want to
expand the evaluation to include a wider variety of issues (UI-heavy issues,
algorithmic challenges, integration tasks) and on different projects (perhaps some
Python backend projects, mobile app issues, etc.). This will paint a fuller picture of
where autonomous LLMs excel and where they fail in software engineering.

FUTURE PLANS

In conclusion, state-of-the-art LLMs, when coupled with a suitable agent framework,
are beginning to demonstrate practical utility in automating segments of software
development in a fully unsupervised manner. They function as knowledgeable but
flawed junior developers, capable of writing code and solving problems in familiar
contexts, yet prone to mistakes that require oversight. By continuing to improve LLM
reasoning, integrating robust self-checks, and using clever orchestrations of multiple
models, we move closer to a future where AI agents can handle routine programming
tasks autonomously. Such a development could significantly accelerate software
engineering workflows, allowing human developers to push the boundaries of
innovation with the grunt work delegated to our AI collaborators.

CONCLUSION

PRACTICAL APPLICATIONS OF
STATE-OF-THE-ART LARGE

LANGUAGE MODELS TO SOLVE REAL-
WORLD SOFTWARE ENGINEERING

PROBLEMS AUTONOMOUSLY

Y U R I J M I K H A L E V I C H

D U B A I , U N I T E D A R A B E M I R A T E S
E M A I L : Y U R I J @ M I K H A L E V I . C H

mailto:yurij@mikhalevi.ch

